Skip to main content
Log in

Dynamic Recrystallization and Phase-Specific Corrosion Performance in a Super Duplex Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Super duplex stainless steel specimens were subjected to controlled (in a deformation simulator) thermal and thermal plus deformation treatments. The objective was to relate the corrosion performance with hot (1000-1300°C) deformed microstructures. The microstructural evolutions were quantified with extensive microtextural characterization and measurements of phase-specific micro-hardness. The corrosion behavior was investigated by anodic polarization and phase-specific selective dissolution methods. Though the thermal treatment imposed an increasing degradation in corrosion performance with holding temperature, the associated deformation at that temperature brought a non-monotonic behavior. The best corrosion performance (or the lowest passivation current density) was noted in the specimen deformed at ~1100°C. This superior corrosion behavior was attributed to the grain size refinement in the austenite phase. Finally, a combination of transmission Kikuchi diffraction (TKD) plus transmission electron microscopy (TEM) clearly related the grain size refinement to discontinuous dynamic recrystallization. The overall corrosion behavior was shown to be determined by a balance between decreasing austenite fraction and dynamic recrystallization-induced grain size refinement of the austenite phase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Gunn, Duplex Stainless Steels: Microstructure, Properties and Applications, Elsevier, England, Cambridge, 1997.

    Book  Google Scholar 

  2. I.M. Association, Practical guidelines for the fabrication of duplex stainless steels, 2009, p 1-64, London, UK, https://www.imoa.info/download_files/stainlesssteel/Duplex_Stainless_Steel_3rd_Edition.pdf

  3. J. Charles, Duplex stainless steels, a review after DSS’07 in Grado, Revue de Métallurgie– Int. J. Metall., 2008, 105(3), p 155–171.

    Article  CAS  Google Scholar 

  4. J. Olsson and M. Snis, Duplex—a new generation of stainless steels for desalination plants, Desalination, 2007, 205(1–3), p 104–113.

    Article  CAS  Google Scholar 

  5. J.O. Nilsson, Super duplex stainless steels, Mater. Sci. Technol., 1992, 8(8), p 685–700.

    Article  CAS  Google Scholar 

  6. L. Jinlong, L. Tongxiang, W. Chen and D. Limin, Comparison of corrosion properties of passive films formed on coarse grained and ultrafine grained AISI 2205 duplex stainless steels, J. Electroanal. Chem., 2015, 757, p 263–269.

    Article  Google Scholar 

  7. L. Jinlong, L. Tongxiang, W. Chen and D. Limin, Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel, Mater. Sci. Eng. C, 2016, 62, p 558–563.

    Article  Google Scholar 

  8. R. Mondal, S.K. Bonagani, A. Lodh, T. Sharma, P. Sivaprasad, G. Chai, V. Kain and I. Samajdar, Relating general and phase specific corrosion in a super duplex stainless steel with phase specific microstructure evolution, Corrosion, 2019, 75(11), p 1315–1326.

    Article  CAS  Google Scholar 

  9. R. Mondal, A. Rajagopal, S.K. Bonagani, A. Prakash, D. Fuloria, P. Sivaprasad, G. Chai, V. Kain and I. Samajdar, Solution annealing of super duplex stainless steel: correlating corrosion performance with grain size and phase-specific chemistry, Metall. Mater. Trans. A, 2020, 51, p 2480–2494.

    Article  CAS  Google Scholar 

  10. I. Alvarez-Armas and S. Degallaix-Moreuil, Duplex Stainless Steels, Wiley, London, 2013.

    Book  Google Scholar 

  11. J. Cabrera, A. Mateo, L. Llanes, J. Prado and M. Anglada, Hot deformation of duplex stainless steels, J. Mater. Process. Technol., 2003, 143, p 321–325.

    Article  Google Scholar 

  12. T.A. Debold, Duplex stainless steel—microstructure and properties, JOM, 1989, 41(3), p 12–15.

    Article  CAS  Google Scholar 

  13. H.D. Solomon, T. Devine Jr, Duplex stainless steels--a tale of two phases, in: Duplex stainless steels, 1982, pp. 693-756.

  14. M. Rosso, I. Peter and D. Suani, About heat treatment and properties of duplex stainless steels, J. Achiev. Mater. Manuf. Eng., 2013, 59, p 26–36.

    Google Scholar 

  15. K. Takizawa, Y. Shimizu, Y. Higuchi and I. Tamura, Effect of cold work and volume fraction of ferrite on corrosion resistance of (α-γ) duplex stainless steel, Tetsu-to-Hagane, 1983, 69(11), p 1448–1455.

    Article  CAS  Google Scholar 

  16. A. Elhoud, H. Ezuber and W. Deans, Influence of cold work and sigma phase on the pitting corrosion behavior of 25 chromium super duplex stainless steel in 3.5% sodium chloride solution, Mater. Corros., 2010, 61(3), p 199–204.

    Article  CAS  Google Scholar 

  17. M. Breda, K. Brunelli, F. Grazzi, A. Scherillo and I. Calliari, Effects of cold rolling and strain-induced martensite formation in a SAF 2205 duplex stainless steel, Metall. Mater. Trans. A, 2015, 46(2), p 577–586.

    Article  CAS  Google Scholar 

  18. A. Elhoud, N.C. Renton and W.F. Deans, The effect of manufacturing variables on the corrosion resistance of a super duplex stainless steel, Int. J. Adv. Manuf. Tech., 2011, 52(5–8), p 451–461.

    Article  Google Scholar 

  19. R. Mondal, S.K. Bonagani, P. Raut, P. Sivaprasad, G. Chai, V. Kain and I. Samajdar, Role of recovery and recrystallization on the post cold work corrosion performance in a super duplex stainless steel, J. Electrochem. Soc., 2020, 167, p 101501.

    Article  CAS  Google Scholar 

  20. K. Tsuzaki, H. Matsuyama, M. Nagao and T. Maki, High-strain rate superplasticity and role of dynamic recrystallization in a superplastic duplex stainless steel, Mater. Trans. JIM, 1990, 31(11), p 983–994.

    Article  Google Scholar 

  21. J. Li, X. Ren and X. Gao, Effect of superplastic deformation on microstructure evolution of 3207 duplex stainless steel, Mater. Character., 2020, 164, p 110320.

    Article  CAS  Google Scholar 

  22. K. Osada, S. Uekoh and K. Ebato, Superplasticity of as rolled duplex stainless steel, Tran. I. S. Ins. Japan/Tetsu-To-Hagane, 1987, 27(9), p 713–718.

    CAS  Google Scholar 

  23. S. Sasaki, T. Katsumura and J. Yanagimoto, Grain refinement technology for duplex stainless steel using rapid cooling immediately before hot working, J. Mater. Process. Technol., 2020, 281, p 116614.

    Article  CAS  Google Scholar 

  24. H. Alinejad, B. Korojy, G. Ebrahimi and A. Momeni, Microstructure and flow behavior of cast 2304 duplex stainless steel at elevated temperatures, J. Mater. Res., 2016, 31, p 3939–3947.

    Article  CAS  Google Scholar 

  25. Y. Han, D. Zou, Z. Chen, G. Fan and W. Zhang, Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium–high strain rates, Mater. Charact., 2011, 62, p 198–203.

    Article  CAS  Google Scholar 

  26. S. Spigarelli, M. El Mehtedi, P. Ricci and C. Mapelli, Constitutive equations for prediction of the flow behaviour of duplex stainless steels, Mater. Sci. Eng. A, 2010, 527(16–17), p 4218–4228.

    Article  Google Scholar 

  27. G. Fargas, N. Akdut, M. Anglada and A. Mateo, Microstructural evolution during industrial rolling of a duplex stainless steel, ISIJ Int., 2008, 48(11), p 1596–1602.

    Article  CAS  Google Scholar 

  28. A. Momeni and K. Dehghani, Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps, Mater. Sci. Eng. A, 2011, 528(3), p 1448–1454.

    Article  Google Scholar 

  29. O. Balancin, W. Hoffmann and J. Jonas, Influence of microstructure on the flow behavior of duplex stainless steels at high temperatures, Metall. Mater. Trans. A, 2000, 31(5), p 1353–1364.

    Article  Google Scholar 

  30. L. Chen, X. Ma, X. Liu and L. Wang, Processing map for hot working characteristics of a wrought 2205 duplex stainless steel, Mater. Des., 2011, 32(3), p 1292–1297.

    Article  CAS  Google Scholar 

  31. D. Rajabi, A. Abedi and G. Ebrahimi, Study on static recrystallization process in duplex stainless steel, IJISSI, 2011, 8, p 20–23.

    CAS  Google Scholar 

  32. P. Cizek and B. Wynne, A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion, Mater. Sci. Eng. A, 1997, 230(1–10), p 88–94.

    Article  Google Scholar 

  33. P. Cizek, The microstructure evolution and softening processes during high-temperature deformation of a 21Cr–10Ni–3Mo duplex stainless steel, Acta Mater., 2016, 106(1–2), p 129–143.

    Article  CAS  Google Scholar 

  34. N. Haghdadi, P. Cizek, H. Beladi and P.D. Hodgson, The austenite microstructure evolution in a duplex stainless steel subjected to hot deformation, Philos. Mag., 2017, 97(15), p 1209–1237.

    Article  CAS  Google Scholar 

  35. W. Chen, C. Zheng, C. Jia, B. Hu and D. Li, Strain-rate dependence of the dynamic softening in a duplex stainless steel, Mater. Character., 2020, 162, p 110219.

    Article  CAS  Google Scholar 

  36. N. Haghdadi, P. Cizek, H. Beladi and P. Hodgson, A novel high-strain-rate ferrite dynamic softening mechanism facilitated by the interphase in the austenite/ferrite microstructure, Acta Mater., 2017, 126, p 44–57.

    Article  CAS  Google Scholar 

  37. A. Dehghan-Manshadi and P. Hodgson, Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite, J. Mater. Sci., 2008, 43(18), p 6272–6277.

    Article  CAS  Google Scholar 

  38. A. Iza-Mendia, A. Pinol-Juez, J. Urcola and I. Gutierrez, Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions, Metall. Mater. Trans. A, 1998, 29(12), p 2975–2986.

    Article  Google Scholar 

  39. S. Kingklang and V. Uthaisangsuk, Investigation of hot deformation behavior of duplex stainless steel grade 2507, Metall. Mater. Trans. A, 2017, 48(1), p 95–108.

    Article  CAS  Google Scholar 

  40. G. Fargas, M. Anglada and A. Mateo, Effect of the annealing temperature on the mechanical properties, formability and corrosion resistance of hot-rolled duplex stainless steel, J. Mater. Process. Technol., 2009, 209(4), p 1770–1782.

    Article  CAS  Google Scholar 

  41. M. Gholami, M. Hoseinpoor and M.H. Moayed, A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel, Corr. Sci., 2015, 94, p 156–164.

    Article  CAS  Google Scholar 

  42. X. Liu, C. Zhang, J. Li, W. Chen, Y. Zheng, H. Li and P. Han, Effect of solution annealing on microstructure evolution and pitting corrosion resistance of SAF2906 super duplex stainless steel, Steel Res. Int., 2017, 88(11), p 1700023.

    Article  Google Scholar 

  43. Y.H. Yang and S.H. Li, High temperature deformation behavior and corrosion resistance of 2205 duplex stainless steel under strain rate of 0.5 s-1, Adv. Mater. Res. Trans. Tech. Publ., 2012, 581, p 1054–1057.

    Google Scholar 

  44. M. Dabala, I. Calliari and A. Variola, Corrosion behavior of a superduplex stainless steel in chloride aqueous solution, J. Mater. Eng. Perform., 2004, 13(2), p 237–240.

    Article  CAS  Google Scholar 

  45. E. Paredes, A. Bautista, S.M. Álvarez and F. Velasco, Influence of the forming process of corrugated stainless steels on their corrosion behaviour in simulated pore solutions, Corr. Sci., 2012, 58, p 52–61.

    Article  CAS  Google Scholar 

  46. A.F. Ciuffini, S. Barella, C. Di Cecca, A. Gruttadauria, S. Crugnola and C. Mapelli, Local pitting corrosion resistance evaluation in large forged UNS-S32760 super duplex stainless steel parts of a sphere valve for the oil & gas industry, Metall. Ital., 2017, 10, p 33–45.

    Google Scholar 

  47. S.I. Wright, M.M. Nowell, R. De Kloe and L. Chan, Orientation precision of electron backscatter diffraction measurements near grain boundaries, Microsc. Microanal., 2014, 20(3), p 852–863.

    Article  CAS  Google Scholar 

  48. P.J. Goodhew and J. Humphreys, Electron Microscopy and Analysis, CRC Press, London, 2000.

    Book  Google Scholar 

  49. S.I. Wright, A review of automated orientation imaging microscopy (OIM), J. Comput. Assist. Microscopy (USA), 1993, 5, p 207–221.

    Google Scholar 

  50. A. Prakash, T.N. Tak, A. Lodh, N. Nayan, S.N. Murty, P. Guruprasad and I. Samajdar, Composition gradient and particle deformed zone: an emerging correlation, Metall. Mater. Trans. A, 2019, 50(3), p 1250–1260.

    Article  CAS  Google Scholar 

  51. B. Verlinden, J. Driver, I. Samajdar and R.D. Doherty, Electron Backscatter Diffraction in Materials Science, Springer, Berlin, 2009.

    Google Scholar 

  52. H. Hwang and Y. Park, Effects of heat treatment on the phase ratio and corrosion resistance of duplex stainless steel, Mater. Trans., 2009, 50, p 0905110767–0905110767.

    Article  Google Scholar 

  53. W.T. Tsai and J.R. Chen, Galvanic corrosion between the constituent phases in duplex stainless steel, Corr. Sci., 2007, 49(9), p 3659–3668.

    Article  CAS  Google Scholar 

  54. Y.H. Yau and M. Streicher, Galvanic corrosion of duplex FeCr-10% Ni alloys in reducing acids, Corrosion, 1987, 43(6), p 366–373.

    Article  CAS  Google Scholar 

  55. E. Symniotis, Galvanic effects on the active dissolution of duplex stainless steels, Corrosion, 1990, 46(1), p 2–12.

    Article  CAS  Google Scholar 

  56. M. Khan, H. Mehtani, A. Durgaprasad, G. Goyal, M. Prasad, S. Parida, T. Dasgupta, N. Birbilis and I. Samajdar, The defining role of interface crystallography in corrosion of a two-phase pearlitic steel, Phil. Mag., 2020, 100, p 1439–1453.

    Article  CAS  Google Scholar 

  57. T. Chandra, D. Bendeich and D. Dunne, Dynamic Recovery and Recrystallization in a Duplex Stainless Steel, Strength of Metals and Alloys (ICSMA 6), Elsevier, London, 1982, p 505–510

    Google Scholar 

  58. L. Duprez, B. De Cooman and N. Akdut, Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation, Metall. Mater. Trans. A, 2002, 33(7), p 1931–1938.

    Article  Google Scholar 

  59. A.A. Salem, S.R. Kalidindi and R.D. Doherty, Strain hardening of titanium: role of deformation twinning, Acta Mater., 2003, 51(14), p 4225–4237.

    Article  CAS  Google Scholar 

  60. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, London, 2012.

    Google Scholar 

  61. H. McQueen, N. Ryan and E. Evangelista, Dynamic recrystallization in austenitic stainless steels, Mater. Sci. Forum, Trans. Tech. Publ., 1993, 113, p 435–440.

    Article  Google Scholar 

  62. A. Dehghan-Manshadi and P.D. Hodgson, Dynamic recrystallization of austenitic stainless steel under multiple peak flow behaviours, ISIJ Inter., 2007, 47(12), p 1799–1803.

    Article  CAS  Google Scholar 

  63. K. Thool, K.M. Krishna, D. Srivastava, A. Patra, R. Doherty and I. Samajdar, Confirmation of dynamically recrystallized grains in hexagonal zirconium through local internal friction measurements, Metall. Mater. Trans. A, 2019, 50(11), p 5000–5014.

    Article  CAS  Google Scholar 

  64. P. Cizek, Microstructure evolution and softening processes in hot deformed austenitic and duplex stainless steels, Mater. Sci. Forum, Trans. Tech. Publ., 2013, 753, p 66–71.

    Article  Google Scholar 

  65. A. Pinol-Juez, A. Iza-Mendia and I. Gutierrez, δ/γ Interface boundary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel, Metall. Mater. Trans. A, 2000, 31(6), p 1671–1677.

    Article  Google Scholar 

  66. N. Haghdadi, P. Cizek, H. Beladi, P.D. Hodgson, Hot deformation and restoration mechanisms in duplex stainless steels: Effect of strain rate, ESSC and DUPLEX 2017, 9th European Stainless Steel Conference-Science and Market and the 5th European Duplex Stainless Steel Conference and Exhibition, 2017, Italian Association for Metallurgy, p 5-16.

  67. J. Urcola and C. Sellars, Effect of changing strain rate on stress-strain behavior during high temperature deformation, Acta Metall., 1987, 35(11), p 2637–2647.

    Article  CAS  Google Scholar 

  68. G. Fan, J. Liu, P. Han and G. Qiao, Hot ductility and microstructure in casted 2205 duplex stainless steels, Mater. Sci. Eng. A, 2009, 515(1–2), p 108–112.

    Article  Google Scholar 

  69. E. Evangelista, H. McQueen, M. Niewczas and M. Cabibbo, Hot workability of 2304 and 2205 duplex stainless steels, Can. Metall. Q., 2004, 43(3), p 339–353.

    Article  CAS  Google Scholar 

  70. N. Haghdadi, D. Martin and P. Hodgson, Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel, Mater. Des., 2016, 106, p 420–427.

    Article  CAS  Google Scholar 

  71. D. Mukherjee, U. Tewary, S. Kumar, S. Karagadde, R. Verma, M. Sambandam and I. Samajdar, Imposed thermal gradients and resultant residual stresses: physical and numerical simulations, Mater. Sci. Technol., 2020, 36, p 1020–1036.

    Article  CAS  Google Scholar 

  72. D.C. Sicupira, R.F. Assumpção, D.B. Perasoli, D.S. Alves, A.O.V. Ferreira and D.B. Santos, Effect of warm rolling on the corrosion and mechanical properties of UNS S32205 duplex stainless steel, Mater. Res., 2019, 22, p 1–12.

    Article  Google Scholar 

  73. M. Seshweni, A. Moloto, S. Aribo, S. Oke, O. Ige and P. Olubambi, Influence of cold and hot rolling on the corrosion behaviour of duplex stainless steels in mine water environment, Mater. Today Proc., 2020, 28, p 912–915.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge support from SandvikTM Materials Technology, Sweden and CoEST (center of excellence on steel technology, IIT Bombay). Support from the National Facility of Texture and OIM (IIT Bombay) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kain.

Ethics declarations

Data Availability

The raw data required to reproduce the results of the present manuscript cannot be shared at this time as the data also form part of ongoing doctoral work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, R., Bonagani, S.K., Raut, P. et al. Dynamic Recrystallization and Phase-Specific Corrosion Performance in a Super Duplex Stainless Steel. J. of Materi Eng and Perform 31, 1478–1492 (2022). https://doi.org/10.1007/s11665-021-06221-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06221-1

Keywords

Navigation