Skip to main content
Log in

Super-Hydrophobic Nanostructured Silica Coating on Aluminum Substrate for Moist Air Condensation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, nanostructured functionalized silica is coated on an aluminum (Al) substrate by the spray pyrolysis method to create a stable and effective super-hydrophobic substrate for water harvesting via moist air. Substrate characterization reveals that (1) major diffraction peaks corresponding to crystoballite SiO2 (C-SiO2), quartz (Q-SiO2), Al2O3, and Al2SiO5 are to be found at SiO2/Al interface; (2) strong chemically bonded methyl functionalized silica is confirmed on the Al surface by Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectrometry (XPS) shows the presence of Al-O-Si bond at the interface; and (3) the equilibrium contact angle of the water droplet on the coated substrate is measured to be 156° ± 5° with a hysteresis of 10° ± 3°. The coating is found to be stable for more than 365 days in a humid atmosphere. Finally, moist air condensation experiments confirm substantial augmentation of condensate collected ranging from 188 ml/m2-h over an untreated aluminum substrate to 750 ml/m2-h over the coated substrate. Hence, it is concluded that nanostructured silica-coated Al substrate is highly effective for enhancing the condensation of water vapor from a moist air environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  1. B.S. Sikarwar, S. Khandekar, S. Agrawal, S. Kumar and K. Muralidhar, Dropwise Condensation Studies on Multiple Scales, Heat Transf. Eng., 2012, 33, p 301–341.

    Article  CAS  Google Scholar 

  2. J.-W. Lee, D.-Y. Ji, K.-Y. Lee and W. Hwang, A Study of Droplet-Behavior Transition on Superhydrophobic Surfaces for Efficiency Enhancement of Condensation Heat Transfer, ACS Omega, 2020, 5, p 27880–27885.

    Article  CAS  Google Scholar 

  3. A. Khaskhoussi, L. Calabrese and E. Proverbio, Superhydrophobic Self-Assembled Silane Monolayers on Hierarchical 6082 Aluminum Alloy for Anti-Corrosion Applications, Appl. Sci. MDPI, 2020, 10, p 1–15.

    Google Scholar 

  4. B.S. Sikarwar, S. Khandekar and K. Muralidhar, Simulation of Flow and Heat Transfer in a Liquid Drop Sliding Underneath a Hydrophobic Surface, Int. J. Heat Mass Transf., 2013, 57, p 786–811.

    Article  Google Scholar 

  5. J.E. Castillo, J.A. Weibel and S. Garimella, The Effect of Relative Humidity on Dropwise Condensation Dynamics, Int. J. Heat Mass Transf., 2015, 80, p 759–766.

    Article  Google Scholar 

  6. V. Baghel, B.S. Sikarwar and K. Muralidhar, Dropwise Condensation from Moist Air Over a Hydrophobic Metallic Substrate, Appl. Therm. Eng., 2020, 181, p 1–17.

    Article  Google Scholar 

  7. D. Attinger, C. Frankiewicz, A.R. Betz, T.M. Schutzius, R. Ganguly, A. Das, C.-J. Kim, and C.M. Megaridis, Surface Engineering for Phase Change Heat Transfer: A Review, MRS Energy Sustain., 2014, 1, p 1–40.

    Article  Google Scholar 

  8. V. Baghel and B.S. Sikarwar, Moist Air Condensation on Inclined Hydrophobic Metallic Surfaces: Simulation & Experiments, in: J.o.P.C. Series (Ed.) 5th International Workshop on Heat/Mass Transfer Advances for Energy Conservation and Pollution Control, IOP Publishing, Novosibirsk, Russia (2019), pp. 1–7.

  9. B. Bhushan, Design of Water Harvesting Towers and Projections for Water Collection From Fog and Condensation, Philos. Trans. R. Soc. A, 2020, 378, p 1–37.

    Google Scholar 

  10. B.E. Fil, G. Kini and S. Garimella, A Review of Dropwise Condensation: Theory, Modeling, Experiments, and Applications, Int. J. Heat Mass Transf., 2020, 160, p 1–21.

    Google Scholar 

  11. K. Liu and L. Jiang, Metallic Surfaces with Special Wettability, Nanoscale, 2011, 3, p 1–14.

    Article  Google Scholar 

  12. S.P. Dalawai, M.A.S. Aly, S.S. Latthe, R. Xing, R.S. Sutar, S. Nagappan, C.-S. Ha and K.K. Sadasivuni, Recent Advances in Durability of Superhydrophobic Self-Cleaning Technology: A Critical Review, Prog. Org. Coat., 2020, 138, p 105381–105396.

    Article  CAS  Google Scholar 

  13. S. Parvate, P. Dixit and S. Chattopadhyay, Superhydrophobic Surfaces: Insights from Theory and Experiment, J. Phys. Chem. B, 2020, 124, p 1323–1360.

    Article  CAS  Google Scholar 

  14. S. Ghaffari, M. Aliofkhazraei, G.B. Darband, A. Zakeri and E. Ahmadi, Review of Superoleophobic Surfaces: Evaluation, Fabrication Methods, and Industrial Applications, Surfaces and Interfaces, 2019, 17, p 100340.

    Article  CAS  Google Scholar 

  15. B. Bhushan, Y.C. Jung and K. Koch, Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion, Philos. Trans. A Math. Phys. Eng. Sci., 2009, 367, p 1631–1672.

    CAS  Google Scholar 

  16. Z. Yuan, X. Wang, J. Bin, C. Peng, S. Xing, M. Wang, J. Xiao, J. Zeng, Y. Xie, X. Xiao, X. Fu, H. Gong and D. Zhao, A Novel Fabrication of a Superhydrophobic Surface with Highly Similar Hierarchical Structure of the Lotus Leaf on a Copper Sheet, Appl. Surf. Sci., 2013, 285, p 205–210.

    Article  CAS  Google Scholar 

  17. W. Barthlott and C. Neinhuis, Purity of the Sacred Lotus, or Escape From Contamination in Biological Surfaces, Planta, 1996, 202, p 1–8.

    Article  Google Scholar 

  18. V. Baghel, B.S. Sikarwar, D.K. Sharma and D.K. Avasthi, A Correlation of Metallic Surface Roughness With Its Hydrophobicity for Dropwise Condensation, Mater. Today Proc., 2020, 21, p 1446–1452.

    Article  CAS  Google Scholar 

  19. Z. Gong, J. Wang, L. Wu, X. Wang, G. Lü and L. Liao, Fabrication of Super Hydrophobic Surfaces on Copper by Solution-immersion, Chin. J. Chem. Eng., 2013, 21, p 920–926.

    Article  CAS  Google Scholar 

  20. A.O. Ijaola, E.A. Bamidele, C.J. Akisin, I.T. Bello, A.T. Oyatobo, A. Abdulkareem, P.K. Farayibi and E. Asmatulu, Wettability Transition for Laser Textured Surfaces: A Comprehensive Review, Surf. Interfaces, 2020, 21, p 1–90.

    Google Scholar 

  21. D.-M. Chun, C.-V. Ngo and K.-M. Lee, Fast Fabrication of Superhydrophobic Metallic surface Using Nanosecond Laser Texturing and low-Temperature Annealing, CIRP Ann. Manuf. Technol., 2016, 65, p 519–522.

    Article  Google Scholar 

  22. U. Eduok, R. Suleiman, M. Khaled and R. Akid, Enhancing Water Repellency and Anticorrosion Properties of a Hybrid Silica Coating on Mild Steel, Prog. Org. Coat., 2016, 93, p 97–108.

    Article  CAS  Google Scholar 

  23. T. Bharathidasan and S. Sathiyanaryanan, Self-Replenishing Superhydrophobic Durable Polymeric Nanocomposite Coatings for Heat Exchanger Channels in Thermal Management Applications, Prog. Organ. Coat., 2020, 148, p 105828.

    Article  CAS  Google Scholar 

  24. R. Sun, J. Zhao, Z. Li, J. Mo, Y. Pan and D. Luo, Preparation of Mechanically Durable Superhydrophobic Aluminum Surface by Sandblasting and Chemical Modification, Prog. Org. Coat., 2019, 133, p 77–84.

    Article  CAS  Google Scholar 

  25. H. Wang, D. Dai and X. Wu, Fabrication of Superhydrophobic Surfaces on Aluminum, Appl. Surf. Sci., 2008, 254, p 5599–5601.

    Article  CAS  Google Scholar 

  26. S.M. Emarati and M. Mozammel, Fabrication of Superhydrophobic Titanium Dioxide Coating on AISI 316L Stainless Steel by Electrophoretic Deposition and Using Trimethoxy(Propyl)Silane Modification, Surf. Eng., 2018, 35, p 456–465.

    Article  Google Scholar 

  27. M. Psarski, J. Marczak, J. Grobelny and G. Celichowski, Superhydrophobic Surface by Replication of LaserMicromachined Pattern in Epoxy/Alumina Nanoparticle Composite, J. Nanomater., 2014, 2014, p 11.

    Article  Google Scholar 

  28. N. Tasaltin, D. Sanli, A. Jonáš, A. Kiraz and C. Erkey, Preparation and Characterization of Superhydrophobic Surfaces Based on Hexamethyldisilazane-Modified Nanoporous Alumina, Nanoscale Res. Lett., 2011, 4, p 487–495.

    Article  Google Scholar 

  29. S. Zheng, C. Li, Q. Fu, M. Li, W. Hu, Q. Wang, M. Du, X. Liu and Z. Chen, Fabrication of Self-Cleaning Superhydrophobic Surface on Aluminum Alloys with Excellent Corrosion Resistance, Surf. Coat. Technol., 2015, 276, p 341–348.

    Article  CAS  Google Scholar 

  30. B. Subeshan, A. Usta and R. Asmatulu, Deicing and Self-Cleaning of Plasma-Treated Superhydrophobic Coatings on the Surface of Aluminum Alloy Sheets, Surf. Interfaces, 2020, 18, p 100429.

    Article  CAS  Google Scholar 

  31. M. Amiriafshar, M. Rafieazad, X. Duan and A. Nasiri, Fabrication and Coating Adhesion Study of Superhydrophobic Stainless Steel Surfaces: The Effect of Substrate Surface Roughness, Surf. Interfaces, 2020, 20, p 100526.

    Article  CAS  Google Scholar 

  32. C.N. Niu, J.Y. Han, S.P. Hu, D.Y. Chao, X.G. Song, M.M.R. Howlader and J. Cao, Fast and Environmentally Friendly Fabrication of Superhydrophilic-Superhydrophobic Patterned Aluminum Surfaces, Surf. Interfaces, 2021, 22, p 100830.

    Article  CAS  Google Scholar 

  33. R. Parin, A. Martucci, M. Sturaro, S. Bortolin, M. Bersani, F. Carraro and D.D. Col, Nano-Structured Aluminum Surfaces for Dropwise Condensation, Surf. Coat. Technol., 2018, 348, p 1–12.

    Article  CAS  Google Scholar 

  34. A. Kim, C. Lee, H. Kim and J. Kim, Simple Approach to Superhydrophobic Nanostructured Al for Practical Anti-Frosting Application based on Enhanced Self-Propelled Jumping Droplets, ACS Appl. Mater. Interfaces, 2015, 7, p 7026–7213.

    Google Scholar 

  35. J. Li, Z. Zhao, Y. Zhang, B. Xiang, X. Tang and H. She, Facile Fabrication of Superhydrophobic Silica Coatings with Excellent Corrosion Resistance and Liquid Marbles, J. Sol-Gel Sci Technol., 2016, 80, p 208–214.

    Article  CAS  Google Scholar 

  36. Y. Zhou, Y. Ma, C. Qi, L. Shen, Q. Fu, Y. Sun and Y. Liu, Superhydrophobic Surface Based on Nano-Engineering for Enhancing the Durability of Anticorrosion, Surf. Eng., 2020, 37, p 288–298.

    Article  Google Scholar 

  37. N.V. Motlagh, J. Sargolzaei and N. Shahtahmassebi, Super-Liquid-Repellent Coating on the Carbon Steel Surface, Surf. Coat. Technol., 2013, 235, p 241–249.

    Article  Google Scholar 

  38. S. Adera, L. Naworski, A. Davitt, N.K. Mandsberg, A. Shneidman, J. Alvarenga and J. Aizenberg, Enhanced Condensation Heat Transfer Using Porous Silica Inverse Opal Coatings on Copper Tubes, Sci. Rep., 2021, 11, 10675.

    Article  CAS  Google Scholar 

  39. W. Kraus and G. Nolze, POWDER CELL—A Program for the Representation and Manipulation Of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns, J. Appl. Cryst., 1996, 29, p 301–303.

    Article  CAS  Google Scholar 

  40. P. Kristin, Materials Data on Al (SG:225) by Materials Project, in: https://materialsproject.org/docs/calculations, United States (2015).

  41. H. Shelton, T. Bi, E. Zurek, J. Smith and P. Dera, The Ideal Crystal Structure of Cristobalite X-I: A Bridge in SiO Densification, J. Phys. Chem. C, 2018, 122, p 17446.

    Article  Google Scholar 

  42. S. Iwata, SiO2 α-quartz (SiO2 rt, T = 300 K) Crystal Structure: Datasheet from "PAULING FILE Multinaries Edition – 2012" in SpringerMaterials (https://materials.springer.com/isp/crystallographic/docs/sd_1812012), in: P. Villars, K. Cenzual (Eds.), Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan (2016).

  43. S. Iwata, Al2O3 Crystal Structure: Datasheet from "PAULING FILE Multinaries Edition—2012" in SpringerMaterials (https://materials.springer.com/isp/crystallographic/docs/sd_0541335), in: P. Villars, K. Cenzual (Eds.), Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan (2016).

  44. K. Persson, Materials Data on Al2SiO5 (SG:62) by Materials Project, in, United States (2014).

  45. B. Zhang, W. Xu, Q. Zhu, Y. Li and B. Hou, Ultrafast one step construction of non-fluorinated superhydrophobic aluminum surfaces with remarkable improvement of corrosion resistance and anti-contamination, J Colloid Interface Sci, 2018, 532, p 201–209.

    Article  CAS  Google Scholar 

  46. N.S. Saleema, D.K.D. Gallant, R.W. Paynter and X.-G. Chen, Chemical Nature of Superhydrophobic Aluminum Alloy Surfaces Produced via a One-Step Process Using Fluoroalkyl-Silane in a Base Medium, ACS Appl. Mater. Interfaces, 2011, 12, p 4775–4781.

    Article  Google Scholar 

  47. D.K. Sharma, R. Kumar, D.K. Avasthi and B.S. Sikarwar, Self Assembly of Super-hydrophobic Nanotextured Methyl Functionalized Silica on Copper and Aluminium Surfaces for Moist Air Condensation, Colloids Surf. A, 2020, 605, p 1–8.

    Article  Google Scholar 

  48. B.V. Crist, XPS XI BE Lookup Table in: B.L. Table (Ed.), XPS Library, Salem, Oregon United States (2019).

  49. R.-C. Feng, Q.-Q. Sun, P. Zhou, W. Yang, P.-F. Wang and D.W. Zhang, High-Performance Bilayer Flexible Resistive Random Access Memory Based on Low-Temperature Thermal Atomic Layer Deposition, Nanoscale Res. Lett., 2013, 92, p 1–7.

    Google Scholar 

  50. R. Aghaei and A. Eshaghi, Optical and Superhydrophilic Properties of Nanoporous Silica-Silica Nanocomposite Thin Film, J. Alloys Compd., 2017, 699, p 112–118.

    Article  CAS  Google Scholar 

  51. K. Meera, C.S. Yang and C.K. Choi, Bonding Structure and Electrical Properties of SiOC(-H) Films Deposited with a Methyltrimethoxysilane Precursor by Using Inductively Coupled Plasma Chemical Vapor Deposition, J. Korean Phys. Soc., 2006, 48, p 1713–1718.

    CAS  Google Scholar 

  52. F.S. Ohuchi, S. Ghose, M.H. Engelhard and D.R. Baer, Chemical Bonding and Electronic Structures of the Al2SiO5 Polymorphs, Andalusite, Sillimanite, and Kyanite: X-ray Photoelectron- and Electron Energy Loss Spectroscopy Studies, Am. Miner., 2006, 91, p 740–746.

    Article  CAS  Google Scholar 

  53. M. Biesinger, X-ray Photoelectron Spectroscopy (XPS) Reference Pages, Surface Science Western. M. Biesinger Ed., Biesinger, Mark, 2009

    Google Scholar 

  54. K. Liu, Z. Huang, A. Hemmatifar, D.I. Oyarzun, J. Zhou and J.G. Santiago, Self-Cleaning Porous Surfaces for Dry Condensation, ACS Appl. Mater. Interfaces, 2018, 8, p 26759–26764.

    Article  Google Scholar 

  55. H. Kim, S.R. Rao, E.A. Kapustin, L. Zhao, S. Yang, O.M. Yaghi and E.N. Wang, Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates, Nat. Commun., 2018, 9, p 1191.

    Article  Google Scholar 

Download references

Acknowledgments

Basant S. Sikarwar acknowledges the financial support from the Science and Engineering Research Board (SERB), Government of India (Project No: ECR/2016/000020) and and Board of research in Nuclear Sciences (BRNS: Project No: 57/14/14/2019-BRNS-34103) Government of India. Authors acknowledge Dr. S.A. Khan and Dr. Indra Sulania, Materials Science Group, Inter-University Accelerator Center (IUAC), New Delhi for SEM, AFM and XRD measurements. In addition, Dr. A.K. Sinha, Synchrotrons Utilization Section, Raja Ramanna Center for Advanced Technology Indore is acknowledegd for validation of the surface characterization results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basant Singh Sikarwar.

Ethics declarations

Conflict of interest

The authors declare that the work reported in this paper does not have known competing for financial or personal interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D.K., Sikarwar, B.S., Upadhyay, S. et al. Super-Hydrophobic Nanostructured Silica Coating on Aluminum Substrate for Moist Air Condensation. J. of Materi Eng and Perform 31, 1266–1276 (2022). https://doi.org/10.1007/s11665-021-06254-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06254-6

Keywords

Navigation