Skip to main content
Log in

Experimental and Numerical Study on Ductile Fracture Prediction of Aluminum Alloy 6016-T6 Sheets Using a Phenomenological Model

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

A phenomenological ductile fracture model is proposed by a careful consideration of void nucleation, growth and coalescence during plastic deformation. Within the model framework, void nucleation is controlled by an equivalent plastic strain function. Void growth takes place through two ways, namely void dilation and void elongation, which are characterized by the normalized hydrostatic stress and normalized maximum shear stress, respectively. Void coalescence is characterized by the maximum shear stress. Aluminum alloy (AA) 6016-T6 sheets are selected to conduct ductile fracture (DF) experiments on specimens with different geometries, which can cover a wide range of stress states from simple shear to balanced biaxial tension. Subsequently, the new DF model is calibrated by using a robust hybrid numerical-experimental approach with a three-dimensional (3D) fracture surface constructed for AA 6016-T6. Ductile fracture data of other two aluminum alloys (AA 2024-T351 and AA 5083-O) are also used to evaluate DF model performance by establishing their 3D fracture surfaces. Finally, a cup drawing test is conducted and simulated as a case study showing how an applicable way of using the new model. Furthermore, the predictive accuracy of the proposed DF model for fracture initiation is compared with other three uncoupled models (modified Mohr–Coulomb criterion (MMC), Lou-Yoon-Huh model and Mu-Zang model) by ABAQUS/Explicit with a user subroutine (VUMAT), which shows a good performance of the proposed DF model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2011, with permission from Elsevier

Fig. 2

Copyright 2018, with permission from Elsevier

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Reference

  1. M.B. Gorji and D. Mohr, Predicting Shear Fracture of Aluminum 6016–T4 During Deep Drawing: Combining Yld-2000 Plasticity With Hosford-Coulomb Fracture Model, Int. J. Mech. Sci., 2018, 137, p 105–120.

    Article  Google Scholar 

  2. P.N.C. Leonardo, J.P. Magrinho, I.M.F. Bragança, M.B. Silva, C.M.A. Silva and P.A.F. Martins, Formability Limits in Sheet-Bulk Forming, Int. J. Mach. Tool Manu., 2020, 149, p 1035.

    Article  Google Scholar 

  3. A. Roatta, M. Stout and J.W. Signorelli, Determination of the Forming-Limit Diagram from Deformations Within Necking Instability: A Digital Image Correlation-Based Approach, J. Mater. Eng. Perform., 2020, 29(6), p 4018–4031.

    Article  CAS  Google Scholar 

  4. F. Ozturk and D. Lee, A New Methodology for Ductile Fracture Criteria to Predict the Forming Limits, J. Mater. Eng. Perform., 2007, 16(2), p 224–228.

    Article  CAS  Google Scholar 

  5. H. Li, M.W. Fu, J. Lu and H. Yang, Ductile Fracture: Experiments and Computations, Int. J. Plast., 2011, 27(2), p 147–180.

    Article  Google Scholar 

  6. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99(1), p 2–15.

    Article  Google Scholar 

  7. C.C. Chu and A. Needleman, Void Nucleation Effects in Biaxially Stretched Sheets, J. Eng. Mater. Technol., 1980, 120(3), p 249–256.

    Article  Google Scholar 

  8. A. Needleman and V. Tvergaard, An Analysis of Ductile Rupture in Notched Bars, J. Mech. Phys. Solids, 1984, 32(6), p 461–490.

    Article  Google Scholar 

  9. K. Nahshon and J.W. Hutchinson, Modification of the Gurson Model for Shear Failure, Eur. J. Mech. A-Solids, 2008, 27, p 1–17.

    Article  Google Scholar 

  10. L. Xue, Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials, Eng. Fract. Mech., 2008, 75, p 3343–3366.

    Article  Google Scholar 

  11. J. Lemaitre, A Continuous Damage Mechanics Model for Ductile Fracture, J. Eng. Mater. Technol., 1985, 107(1), p 83–89.

    Article  Google Scholar 

  12. T.S. Cao, J.M. Gachet, P. Montmitonnet and P.O. Bouchard, A Lode-Dependent Enhanced Lemaitre Model For Ductile Fracture Prediction at Low Stress Triaxiality, Eng. Fract. Mech., 2014, 124–125, p 80–96.

    Article  Google Scholar 

  13. A.M. Freudenthal, The Inelastic Behavior of Engineering Materials and Structures, John Wiley & Sons, NewYork, 1950.

    Google Scholar 

  14. M. Oyane, T. Sato, K. Okimoto and S. Shima, Criteria for Ductile Fracture And Their Applications, J. Mech. Work. Technol., 1980, 4, p 65–81.

    Article  CAS  Google Scholar 

  15. J.R. Rice and D.A. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, 17, p 201–217.

    Article  Google Scholar 

  16. M. Cockcroft and D. Latham, Ductility and the Workability of Metals, J. Inst. Met., 1968, 96(1), p 33–39.

    CAS  Google Scholar 

  17. P. Brozzo, B. Deluca, R. Rendina A New Method for the Prediction of Formability Limits in Metal Sheets. Proceedings of the 7th Biennial Conference of the International Deep Drawing Research Group. Amsterdam, Netherlands, 1972

  18. H.N. Han and K. Kim, A Ductile Fracture Criterion in Sheet Metal Forming Process, J. Mater. Process. Technol., 2003, 142(1), p 231–238.

    Article  CAS  Google Scholar 

  19. Y. Bao and T. Wierzbicki, On the Cut-Off Value of Negative Triaxiality for Fracture, Eng. Fract. Mech., 2005, 72(7), p 1049–1069.

    Article  Google Scholar 

  20. Y. Bai and T. Wierzbicki, Application of Extended Mohr-Coulomb Criterion to Ductile Fracture, Int. J. Fract., 2009, 161, p 1–20.

    Article  Google Scholar 

  21. Y.S. Lou, H. Huh, S.J. Lim and K. Pack, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., 2012, 49, p 3605–3615.

    Article  CAS  Google Scholar 

  22. Y. Lou, J.W. Yoon and H. Huh, Modeling of Shear Ductile Fracture Considering a Changeable Cut-Off Value for Stress Triaxiality, Int. J. Plast., 2014, 54, p 56–80.

    Article  CAS  Google Scholar 

  23. D. Mohr and S.J. Marcadet, Micromechanically-Motivated Phenomenological Hosford-Coulomb Model for Predicting Ductile Fracture Initiation at Low Stress Triaxialities, Int. J. Solids Struct., 2015, 67–68, p 40–55.

    Article  Google Scholar 

  24. L. Mu, Y. Zang, Y. Wang, X.L. Li and P.M. Araujo Stemler, Phenomenological Uncoupled Ductile Fracture Model Considering Different Void Deformation Modes For Sheet Metal Forming, Int. J. Mech. Sci., 2018, 141, p 408–423.

    Article  Google Scholar 

  25. L. Mu, Z. Jia, Z.W. Ma, F.H. Shen, Y.K. Sun and Y. Zang, A Theoretical Prediction Framework for the Construction of a Fracture Forming Limit Curve Accounting For Fracture Pattern Transition, Int. J. Plast., 2020, 129, p 102706.

    Article  Google Scholar 

  26. Q. Hu, X.F. Li, X.H. Han and J. Chen, A New Shear and Tension Based Ductile Fracture Criterion: Modeling and Validation, Eur. J. Mech. A-Solids, 2017, 66, p 370–386.

    Article  Google Scholar 

  27. A.S. Argon, J. Im and R. Safoglu, Cavity Formation From Inclusions in Ductile Fracture, Metall. Trans. A, 1975, 6(4), p 825–837.

    Article  Google Scholar 

  28. F.M. Beremin, Cavity Formation From Inclusions in Ductile Fracture of A508 Steel, Metall. Trans. A, 1981, 12, p 723–731.

    Article  CAS  Google Scholar 

  29. B.J. Lee and M.E. Mear, Stress Concentration Induced by an Elastic Spheroidal Particle in a Plastically Deforming Solid, J. Mech. Phys. Solids, 1999, 47, p 1301–1336.

    Article  Google Scholar 

  30. S.H. Goods and L.M. Brown, Overview No. 1: The Nucleation of Cavities by Plastic Deformation, Acta Metall., 1979, 27(1), p 1–15.

    Article  CAS  Google Scholar 

  31. A. Needleman and J.R. Rice, Limits to ductility set by plastic flow localization, Mechanics of Sheet Metal Forming: Material Behavior And Deformation Analysis. D.P. Koistinen, N.M. Wang Ed., Springer, Boston, 1978, p 237–267

    Chapter  Google Scholar 

  32. G. Le Roy, J.D. Embury, G. Edwards and M.F. Ashby, A Model of Ductile Fracture Based on the Nucleation and Growth of Voids, Acta Metall., 1981, 29, p 1509–1522.

    Article  Google Scholar 

  33. C. Landron, O. Bouaziz, E. Maire and J. Adrien, Characterization and Modeling of Void Nucleation by Interface Decohesion in Dual Phase Steels, Scr. Mater., 2010, 63(10), p 973–976.

    Article  CAS  Google Scholar 

  34. E. Maire, O. Bouaziz, M. Di Michiel and C. Verdu, Initiation and Growth of Damage in a Dual-Phase Steel Observed by X-ray Microtomography, Acta Mater., 2008, 56(18), p 4954–4964.

    Article  CAS  Google Scholar 

  35. F.A. McClintock, A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech., 1968, 35(2), p 363–371.

    Article  Google Scholar 

  36. B. Marino, F. Mudry and A. Pineau, Experimental Study of Cavity Growth in Ductile Rupture, Eng. Fract. Mech., 1985, 22(6), p 989–996.

    Article  Google Scholar 

  37. R.B. Sills and B.L. Boyce, Void Growth by Dislocation Adsorption, Mater. Res. Lett., 2020, 8(3), p 103–109.

    Article  CAS  Google Scholar 

  38. M. Achouri, G. Germain, P. Dal Santo and D. Saidane, Experimental Characterization and Numerical Modeling of Micromechanical Damage Under Different Stress States, Mater. Des., 2013, 50, p 207–222.

    Article  CAS  Google Scholar 

  39. R. Kiran and K. Khandelwal, A Coupled Microvoid Elongation and Dilation Based Ductile Fracture Model for Structural Steels, Eng. Fract. Mech., 2015, 145, p 15–42.

    Article  Google Scholar 

  40. A. Weck and D.S. Wilkinson, Experimental Investigation of Void Coalescence in Metallic Sheets Containing Laser Drilled Holes, Acta Mater., 2008, 56(8), p 1774–1784.

    Article  CAS  Google Scholar 

  41. P.F. Thomason, A Three-Dimensional Model for Ductile Fracture by the Growth and Coalescence of Microvoids, Acta Metall., 1985, 33(6), p 1087–1095.

    Article  CAS  Google Scholar 

  42. C. Tekoglu, Void Coalescence in Ductile Solids Containing Two Populations of Voids, Eng. Fract. Mech., 2015, 147, p 418–430.

    Article  Google Scholar 

  43. L. Brown, J. Embury, Initiation and Growth Of Voids At Second-Phase Particles, Proceedings of the Conference on Microstructure and Design of Alloys, Institute of Metals and Iron and Steel Insitute, London, 1973, pp. 164-169

  44. I. Barsoum and J. Faleskog, Micromechanical Analysis on the Influence of the Lode Parameter on Void Growth and Coalescence, Int. J. Solids Struct., 2011, 48(6), p 925–938.

    Article  Google Scholar 

  45. Y.S. Lou, J.W. Yoon, H. Huh, Q. Chao and J.H. Song, Correlation of the Maximum Shear Stress with Micro-Mechanisms of Ductile Fracture for Metals with High Strength-To-Weight Ratio, Int. J. Mech. Sci., 2018, 146–147, p 583–601.

    Article  Google Scholar 

  46. Z. Jia, B. Guan, Y. Zang, Y. Wang and L. Mu, Modified Johnson-Cook Model of Aluminum Alloy 6016–T6 Sheets at Low Dynamic Strain Rates, Mater. Sci. Eng. A, 2021, 820, p 141565.

    Article  CAS  Google Scholar 

  47. L.Y. Qian, G. Fang, P. Zeng and Q. Wang, Experimental and Numerical Investigations into the Ductile Fracture During the Forming of Flat-Rolled 5083-O Aluminum Alloy Sheet, J. Mater. Process. Technol., 2015, 220, p 264–275.

    Article  CAS  Google Scholar 

  48. T. Wierzbicki, Y. Bao, Y. Lee and Y. Bai, Calibration and Evaluation of Seven Fracture Models, Int. J. Mech. Sci., 2005, 47(4–5), p 719–743.

    Article  Google Scholar 

  49. Y.S. Lou, L. Chen, T. Clausmeyer, A.E. Tekkaya and J.W. Yoon, Modeling of Ductile Fracture From Shear to Balanced Biaxial Tension for Sheet Metals, Int. J. Solids Struct., 2017, 112, p 169–184.

    Article  CAS  Google Scholar 

  50. K. Bandyopadhyay, S.K. Panda, P. Saha and G. Padmanabham, Limiting Drawing Ratio and Deep Drawing Behavior of Dual Phase Steel Tailor Welded Blanks: FE Simulation and Experimental Validation, J. Mater. Process. Technol., 2015, 217, p 48–64.

    Article  CAS  Google Scholar 

  51. G.S. Cai, J.L. Yang, Y.F. Yuan, X.Y. Yang, L.H. Lang and S. Alexandrov, Mechanics Analysis of Aluminum Alloy Cylindrical Cup During Warm Sheet Hydromechanical Deep Drawing, Int. J. Mech. Sci., 2020, 174, p 105556.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51805024, 51805023), and Scientific and Technological Innovation Foundation of Foshan, University of Science and Technology Beijing (USTB), China (Nos. BK20BE007, BK21BE015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Guan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Modified Mohr–Coulomb (MMC) mode could be expressed as follows (Ref 20):

$$\overline{\varepsilon }_{f - MMC} = \left\{ {\frac{A}{{C_{7} }}\left[ {C_{8} + \left( {2 + \sqrt 3 } \right)\left( {1 - C_{8} } \right)\left( {\sqrt {L^{2} + 3} - \sqrt 3 } \right)} \right]\left[ {\sqrt {\frac{{1 + C_{6}^{2} }}{{L^{2} + 3}}} + C_{6} \left( {\eta - \frac{L}{{3\sqrt {L^{2} + 3} }}} \right)} \right]} \right\}^{{ - \frac{1}{n}}}$$
(18)

where A, n and C6~C8 are the material constants.

Lou-Yoon-Huh model could be expressed as follows under proportional loading (49):

$$\overline{\varepsilon }_{f - Lou} = C_{11} \left( {\frac{{\sqrt {L^{2} + 3} }}{2}} \right)^{{C_{9} }} \left[ {\frac{{3\left( {1 + C_{12} } \right)\sqrt {L^{2} + 3} }}{{3\left( {\eta + C_{12} } \right)\sqrt {L^{2} + 3} - L + 3}}} \right]^{{C_{10} }}$$
(19)

where C9~C12 are the material constants.

Mu-Zang model could be expressed as follows under proportional loading (Ref 24):

$$\overline{\varepsilon }_{f - Mu} = C_{15} \left\langle {\frac{{3\sqrt {L^{2} + 3} }}{{C_{13} \left( {3\eta \sqrt {L^{2} + 3} - L} \right) + 3}}} \right\rangle^{{C_{14} }}$$
(20)

where C13~C15 are the material constants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Mu, L., Guan, B. et al. Experimental and Numerical Study on Ductile Fracture Prediction of Aluminum Alloy 6016-T6 Sheets Using a Phenomenological Model. J. of Materi Eng and Perform 31, 867–881 (2022). https://doi.org/10.1007/s11665-021-06248-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06248-4

Keywords

Navigation