Skip to main content

Advertisement

Log in

Peptidyl-prolyl cis–trans isomerase A participates in the selenium transport into the rat brain

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Selenium, an essential micronutrient, plays vital roles in the brain. Selenoprotein P (SELENOP), a major plasma selenoprotein, is thought to transport selenium to the brain. However, Selenop-knockout mice fed a diet containing an adequate amount of selenium shows no objective neurological dysfunction which is observed in the selenium-deficient diet-fed Selenop-knockout mice. This fact indicated that selenium from low-mass selenium-source compounds can be transported by SELENOP-independent alternative pathways to the brain. In this study, to obtain the basic information about the SELENOP-independent transport pathways, we performed ex vivo experiments in which the rat brain cell membrane fraction was analyzed to find selenium-binding and/or -interactive proteins using its reactive metabolic intermediate, selenotrisulfide (STS), and MALDI TOF-mass spectrometry. Several membrane proteins with the cysteine (C) thiol were found to be reactive with STS through the thiol-exchange reaction. One of the C-containing proteins in the brain cell membrane fraction was identified as peptidyl-prolyl cis–trans isomerase (PPIase) A from tryptic fragmentation experiments and database search. Among the 4 C residues in rat PPIase A, 21st C was proved to react with STS by assessment using C mutated recombinant proteins. PPIase A is ubiquitously expressed and also associates with a variety of biologically important events such as immunomodulation, intracellular signaling, transcriptional regulation and protein trafficking. Consequently, PPIase A was thought to participate in the selenium transport into the rat brain.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A:

L-Alanine

C:

L-Cysteine

DAN:

2,3-Diaminonaphthalene

DTNB:

5,5′-Dithiobis(2-nitrobenzoic acid)

GPX:

Glutathione peroxidase

GSH:

Glutathione in reduced form

GSSG:

Glutathione in oxidized form

GSSeSG:

Glutathione selenotrisulfide

MALDI TOF-MS:

Matrix-assisted laser desorption ionization time of flight-mass spectrometry

NEM:

N-Ethylmaleimide

Pen:

L-Penicillamine

PenSSeSPen:

L-Penicillamine selenotrisulfide

PPIase:

Peptidyl-prolyl cistrans isomerase

SELENOP:

Selenoprotein P

STS:

Selenotrisulfide

U:

L-Selenocysteine

References

  1. Rayman M (2012) Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  2. Kryukov VG, Castellrano S, Novoselov SV, Labanov AV, Zehtab O, Guigo R, Gladyshev V (2003) Science 300:1439–1443

    Article  CAS  PubMed  Google Scholar 

  3. Margis R, Dunand C, Teixeira FK, Margis-Pinheiro M (2007) FEBS J 275:3959–3970

    Article  CAS  Google Scholar 

  4. Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Trends Neurosci 27:489–495

    Article  CAS  PubMed  Google Scholar 

  5. Fox MD, Raichle ME (2007) Nat Rev Neurosci 8:700–711

    Article  CAS  PubMed  Google Scholar 

  6. Aoyama K, Watabe M, Nakaki T (2008) J Pharmacol Sci 108:227–238

    Article  CAS  PubMed  Google Scholar 

  7. Otani K, Shichita T (2020) Inflamm Regen 40:28

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reichert CO, de Freitas FA, Sampaio-Silva J, Rokita-Rosa L, de Lima BP, Levy D, Bydlowski SP (2020) Int J Mol Sci 21:8765

    Article  CAS  PubMed Central  Google Scholar 

  9. Cardoso BR, Ong TP, Jacob-Filho W, Jaluul O, d’Abila MI, Cozzolino SMF (2010) Br J Nutr 103:803–806

    Article  CAS  PubMed  Google Scholar 

  10. Pillai R, Uyehara-Lock JH, Bellinger FP (2014) IUBMB Life 66:229–239

    Article  CAS  PubMed  Google Scholar 

  11. Solovyev ND (2015) J Inorg Biochem 153:1–12

    Article  CAS  PubMed  Google Scholar 

  12. Haratake M, Yoshida S, Mandai M, Fuchigami T, Nakayama M (2013) Metallomics 5:479–483

    Article  CAS  PubMed  Google Scholar 

  13. Burk RF, Hill KE, Motley AK, Winfrey VP, Kurokawa S, Mitchell SL, Zhang W (2014) FASEB J 28:3579–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Burk RF, Hill KE, Olson GE, Weeber EJ, Motley AK, Winfrey VP, Austin LM (2007) J Neurosci 27:6207–6211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Valentine WM, Abel TW, Hill KE, Austin LM, Burk RF (2008) J Neuropathol Exp Neurol 67:68–77

    Article  PubMed  Google Scholar 

  16. Hill KE, Zhou J, McMahan WJ, Motley AK, Atkins JF, Gesteland RF, Burk RF (2003) J Biol Chem 278:13640–13646

    Article  CAS  PubMed  Google Scholar 

  17. Self WT, Tsai L, Stadtman TC (2000) Proc Natl Acad Sci USA 97:12481–12486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fernandes PA, Ramos MJ (2004) Chem Eur J 10:257–266

    Article  CAS  PubMed  Google Scholar 

  19. Haratake M, Fujimoto K, Hongoh M, Yoshida S, Fuchigami T, Nakayama M (2013) In: Bayse CA, Brumaghim JL (ed) Biochalcogen chemistry: biological chemistry of sulfur, selenium, and tellurium. Chapter 10 Selenotrisulfide as a metabolic intermediate in biological systems. American Chemical Society

  20. Haratake M, Fujimoto K, Ono M, Nakayama M (2005) Biochim Biophys Acta 1723:215–220

    Article  CAS  PubMed  Google Scholar 

  21. Haratake M, Fujimoto K, Hirakawa R, Ono M, Nakayama M (2008) J Biol Inorg Chem 13:471–479

    Article  CAS  PubMed  Google Scholar 

  22. Haratake M, Hongoh M, Ono M, Nakayama M (2009) Inorg Chem 48:7805–7811

    Article  CAS  PubMed  Google Scholar 

  23. Hongoh M, Haratake M, Fuchigami T, Nakayama M (2012) Dalton Trans 41:7340–7349

    Article  CAS  PubMed  Google Scholar 

  24. Haratake M, Hongoh M, Miyauchi M, Hirakawa R, Ono M, Nakayama M (2008) Inorg Chem 47:6273–6280

    Article  CAS  PubMed  Google Scholar 

  25. Hori E, Yoshida S, Haratake M, Ura S, Fuchigami T, Nakayama M (2015) J Biol Inorg Chem 20:781–789

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida S, Hori E, Ura S, Haratake M, Fuchigami T, Nakayama M (2016) Chem Pharm Bull 64:52–58

    Article  Google Scholar 

  27. Hori E, Yoshida S, Fuchigami T, Haratake M, Nakayama M (2018) Metallomics 10:614–622

    Article  CAS  PubMed  Google Scholar 

  28. Haratake M, Ono M, Nakayama M (2004) J Health Sci 50:366–371

    Article  CAS  Google Scholar 

  29. Maeda T, Kiguchi N, Kobayashi Y, Ozaki M, Kishioka S (2010) Biol Pharm Bull 33:1011–1014

    Article  CAS  PubMed  Google Scholar 

  30. Thayyullathil F, Chathoth S, Hago A, Patel M, Szulc ZM, Hannun Y, Galadari S (2011) Biochim Biophys Acta 1811:242–252

    Article  CAS  PubMed  Google Scholar 

  31. Watkinson JH (1966) Anal Chem 38:92–97

    Article  CAS  PubMed  Google Scholar 

  32. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  33. Ellman GL (1958) Arch Biochem Biophys 74:443–450

    Article  CAS  PubMed  Google Scholar 

  34. Li-Ren Xu, Yan X, Luo M, Guan Y-X, Yao S-J (2008) Biotechnol Prog 24:302–310

    Article  CAS  Google Scholar 

  35. Nigro P, Pompilio G, Capogrossi MC (2013) Cell Death Dis 4:e888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghezzi P, Casagrande S, Massignan T, Basso M, Bellacchio E, Mollica L, Biasini E, Tonelli R, Eberini I, Gianazza E, Dai WW, Fratelli M, Salmona M, Sherry B, Bonetto V (2006) Proteomics 6:817–825

    Article  CAS  PubMed  Google Scholar 

  37. Liu J, Albers MW, Chen CM, Schreiber SL, Walsh CT (1990) Proc Natl Acad Sci USA 87:2304–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, Berk BC, Zlokovic BV (2012) Nature 485:512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burk RF, Hill KE (2015) Ann Rev Nutr 35:109–134

    Article  CAS  Google Scholar 

  40. Solovyev N, Drobyshev E, Blume B, Michalke B (2021) Front Neurosci 15:630016

    Article  PubMed  PubMed Central  Google Scholar 

  41. Satoh K, Shimokawa H, Berk BC (2010) Circ J 74:2249–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song F, Zhang X, Ren XB, Zhu P, Xu J, Wang L, Li YF, Zhong N, Ru Q, Zhang DW, Jiang JL, Xia B, Chen ZN (2011) J Biol Chem 286:8197–8203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cao M, Yuan W, Peng M, Mao Z, Zhao Q, Sun X, Yan J (2019) Biosci Rep 39:BSR20193190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suzuki J, Jin ZG, Meoli DF, Matoba T, Berk BC (2006) Circ Res 98:811–817

    Article  CAS  PubMed  Google Scholar 

  45. Lee SP, Hwang YS, Kim YJ, Kwon KS, Kim HJ, Kim K, Chae HZ (2001) J Biol Chem 276:29826–29832

    Article  CAS  PubMed  Google Scholar 

  46. Takapoo M, Chamseddine AH, Bhalla RC, Miller FJ (2011) Vasc Pharmacol 55:143–148

    Article  CAS  Google Scholar 

  47. Stacey MM, Cuddihy SL, Hampton MB, Winterbourn CC (2012) Arch Biochem Biophys 527:45–54

    Article  CAS  PubMed  Google Scholar 

  48. Tian H, Yu D, Hu Y, Zhang P, Yang Y, Hu Q, Li M (2018) Mol Med Rep 18:4349–4355

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim K, Dauphin A, Komurlu S, McCauley S, Yurkovetskiy LA, Carbone C, Diehl WE, Strmbio-De-Castilia C, Campbell EM, Luban J (2019) Nat Microbiol 4:2044–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant number JP16K18921 and JP19K16351. This study was the result of using research equipment shared in the MEXT Project for promoting public utilization of advanced research infrastructure (Program for supporting introduction of the new sharing system) Grant number JPMXS0422500320.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sakura Yoshida or Mamoru Haratake.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7950 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, S., Yamamoto, A., Masumoto, H. et al. Peptidyl-prolyl cis–trans isomerase A participates in the selenium transport into the rat brain. J Biol Inorg Chem 26, 933–945 (2021). https://doi.org/10.1007/s00775-021-01903-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01903-6

Keywords

Navigation