Skip to main content

Advertisement

Log in

Selected polyoxopalladates as promising and selective antitumor drug candidates

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Polyoxo-noble-metalates (PONMs), a class of molecular noble metal-oxo nanoclusters that combine features of both polyoxometalates and noble metals, are a promising platform for the development of next-generation antitumor metallodrugs. This study aimed to evaluate the antitumor potential against human neuroblastoma cells (SH-SY5Y), as well as toxicity towards healthy human peripheral blood cells (HPBCs), of five polyoxopalladates(II): (Na8[Pd13As8O34(OH)6]·42H2O (Pd13), Na4[SrPd12O6(OH)3(PhAsO3)6(OAc)3]·2NaOAc·32H2O (SrPd12), Na6[Pd13(AsPh)8O32]·23H2O (Pd13L), Na12[SnO8Pd12(PO4)8]·43H2O (SnPd12), and Na12[PbO8Pd12(PO4)8]·38H2O (PbPd12)), as the largest subset of PONMs. A pure inorganic, Pd13, was found as the most potent and selective antineuroblastoma agent with IC50 values (µM) of 7.2 ± 2.2 and 4.4 ± 1.2 for 24 and 48 h treatment, respectively, even lower than cisplatin (28.4 ± 7.4 and 11.6 ± 0.8). The obtained IC50 values (µM) for 24/48 h treatment with SrPd12 and Pd13L were 75.8 ± 6.7/76.7 ± 22.9 and 63.8 ± 3.6/21.4 ± 10.8, respectively, whereas SnPd12 and PbPd12 did not remarkably affect the SH-SY5Y viability (IC50 > > 100 µM). Pd13 caused depolarisation of inner mitochondrial membrane prior to superoxide ion hyperproduction, followed by caspase activation, DNA fragmentation and cell cycle arrest, all hallmarks of apoptotic cell death, and accompanied by an increase in acidic vesicles content, suggestive of autophagy induction. Importantly, Pd13 demonstrated the antitumor effect at concentrations not cytogenotoxic for normal HPBCs. On the contrary, SrPd12 and Pd13L at concentrations ≥ 1/3 IC50 (24 h) decreased HPBC viability and increased % tail DNA up to 42% and 3.05 times, respectively, related to control. SnPd12 and PbPd12, previously confirmed promising antileukemic agents, did not exhibit cytogenotoxicity to HPBCs, and thus could be regarded as tumor cell specific and selective drug candidates.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AO:

Acridine orange

CDDP:

Cisplatin

EB:

Ethidium bromide

HPBC:

Human peripheral blood cell

PBMC:

Peripheral blood mononuclear cell

PBS:

Phosphate-buffered saline

PI:

Propidium iodide

POM:

Polyoxometalate

PONM:

Polyoxo-noble-metalate

POP:

Polyoxopalladate

References

  1. Williams CJ, Whitehouse JMA (1979) Cisplatinum: a new anti-cancer agent. Br Med J 1:1689–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Momić TG, Čolović MB, Lazarević-Pašti TD, Vasić VM (2016) Metal based compounds, modulators of Na, K-ATPase with anticancer activity. In: Chakraborti S, Dhalla NS (eds) Advances in biochemistry in health and disease, regulation of membrane Na+-K+-ATPase. Springer International Publishing, Berlin. https://doi.org/10.1007/978-3-319-24750-224

    Chapter  Google Scholar 

  3. Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P (2016) New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 310:41–79. https://doi.org/10.1016/j.ccr.2015.11.004

    Article  CAS  Google Scholar 

  4. Deo KM, Ang DL, McGhie B, Rajamanickam A, Dhiman A, Khoury A, Holland J, Bjelosevic A, Pages B, Gordon C, Aldrich-Wright JR (2018) Platinum coordination compounds with potent anticancer activity. Coord Chem Rev 375:148–163. https://doi.org/10.1016/j.ccr.2017.11.014

    Article  CAS  Google Scholar 

  5. Brabec V, Hrabina O, Kasparkova J (2017) Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 351:2–31. https://doi.org/10.1016/j.ccr.2017.04.013

    Article  CAS  Google Scholar 

  6. Farrell NP (2015) Multi-platinum anti-cancer agents. Substitution-inert compounds for tumor selectivity and new targets. Chem Soc Rev 44(24):8773–8785. https://doi.org/10.1039/c5cs00201j

    Article  CAS  PubMed  Google Scholar 

  7. Khoury A, Deo KM, Aldrich-Wright JR (2020) Recent advances in platinum-based chemotherapeutics that exhibit inhibitory and targeted mechanisms of action. J Inorg Biochem 207:111070. https://doi.org/10.1016/j.jinorgbio.2020.111070

    Article  CAS  PubMed  Google Scholar 

  8. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124. https://doi.org/10.1097/maj.0b013e31812dfe1e

    Article  PubMed  Google Scholar 

  9. Niioka T, Uno T, Yasui-Furukori N, Takahata T, Shimizu M, Sugawara K, Tateishi T (2007) Pharmacokinetics of low-dose nedaplatin and validation of AUC prediction in patients with non-small-cell lung carcinoma. Cancer Chemother Pharmacol 59:575–580. https://doi.org/10.1007/s00280-006-0298-2

    Article  CAS  PubMed  Google Scholar 

  10. Hartmann JT, Lipp H-P (2003) Toxicity of platinum compounds. Expert Opin Pharmacother 4(6):889–901. https://doi.org/10.1517/14656566.4.6.889

    Article  CAS  PubMed  Google Scholar 

  11. Rottenberg S, Disler C, Perego P (2021) The rediscovery of platinum-based cancer therapy. Nat Rev Cancer 21(1):37–50. https://doi.org/10.1038/s41568-020-00308-y

    Article  CAS  PubMed  Google Scholar 

  12. Zahreddine H, Borden KLB (2013) Mechanisms and insights into drug resistance in cancer. Front Pharmacol. https://doi.org/10.3389/fphar.2013.00028

    Article  PubMed  PubMed Central  Google Scholar 

  13. Johnstone TC, Suntharalingam K, Lippard SJ (2016) The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 116(5):3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Omondi RO, Ojwach SO, Jaganyi D (2020) Review of comparative studies of cytotoxic activities of Pt(II), Pd(II), Ru(II)/(III) and Au(III) complexes, their kinetics of ligand substitution reactions and DNA/BSA interactions. Inorg Chim Acta 512:119883. https://doi.org/10.1016/j.ica.2020.119883

    Article  CAS  Google Scholar 

  15. Gill DS (1984) Structure activity relationship of antitumor palladium complexes. In: Hacker MP, Douple EB, Krakoff IH (eds) Platinum coordination complexes in cancer chemotherapy. Developments in oncology. Springer, Boston. https://doi.org/10.1007/978-1-4613-2837-7_21

    Chapter  Google Scholar 

  16. Puthraya KH, Srivastava TS, Amonkar AJ, Adwankar MK, Chitnis MP (1986) Some potential anticancer palladium(II) complexes of 2,2’-bipyridine and amino acids. J Inorg Biochem 26(1):45–54. https://doi.org/10.1016/0162-0134(86)80035-6

    Article  CAS  PubMed  Google Scholar 

  17. Mital R, Jain N, Srivastava TS (1989) Synthesis, characterization and cytotoxic studies of diamine and diimine palladium(II) complexes of diethyldithiocarbamate and binding of these and analogous platinum(II) complexes with DNA. Inorg Chim Acta 166(1):135–140. https://doi.org/10.1016/s0020-1693(00)80798-7

    Article  CAS  Google Scholar 

  18. Alam MN, Huq F (2016) Comprehensive review on tumour active palladium compounds and structure–activity relationships. Coord Chem Rev 316:36–67. https://doi.org/10.1016/j.ccr.2016.02.001

    Article  CAS  Google Scholar 

  19. Vojtek M, Marques MPM, Ferreira IMPLVO, Mota-Filipe H, Diniz C (2019) Anticancer activity of palladium-based complexes against triple-negative breast cancer. Drug Discov Today 24(4):1044–1058. https://doi.org/10.1016/j.drudis.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  20. de Souza RFF, da Cunha GA, Pereira JCM, Garcia DM, Bincoletto C, Goto RN, Leopoldino AM, da Silva IC, Pavan FR, Deflon VM, de Almeida ET, Mauro AE, Netto AV (2019) Orthopalladated acetophenone oxime compounds bearing thioamides as ligands: synthesis, structure and cytotoxic evaluation. Inorg Chim Acta 486:617–624. https://doi.org/10.1016/j.ica.2018.11.022

    Article  CAS  Google Scholar 

  21. Štarha P, Trávníček Z (2019) Non-platinum complexes containing releasable biologically active ligands. Coord Chem Rev 395:130–145. https://doi.org/10.1016/j.ccr.2019.06.001

    Article  CAS  Google Scholar 

  22. Misirlic-Dencic S, Poljarevic J, Isakovic AM, Sabo T, Markovic I, Trajkovic V (2020) Current development of metal complexes with diamine ligands as potential anticancer agents. Curr Med Chem 27(3):380–410. https://doi.org/10.2174/0929867325666181031114306

    Article  CAS  PubMed  Google Scholar 

  23. Carneiro TJ, Martins AS, Marques MPM, Gil AM (2020) Metabolic aspects of palladium(II) potential anti-cancer drugs. Front Oncol 10:590970. https://doi.org/10.3389/fonc.2020.590970

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yanagie H, Ogata A, Mitsui S, Hisa T, Yamase T, Eriguchi M (2006) Anticancer activity of polyoxomolybdate. Biomed Pharmacother 60:349–352. https://doi.org/10.1016/j.biopha.2006.06.018

    Article  CAS  PubMed  Google Scholar 

  25. Yamase T (2013) Polyoxometalates active against tumors, viruses, and bacteria. Prog Mol Subcell Biol 54:65–116. https://doi.org/10.1007/978-3-642-41004-8_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bijelic A, Aureliano M, Rompel A (2019) Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew Chem Int Ed 58:2980–2999. https://doi.org/10.1002/anie.201803868

    Article  CAS  Google Scholar 

  27. Čolović MB, Lacković M, Lalatović J, Mougharbel AS, Kortz U, Krstić DZ (2020) Polyoxometalates in biomedicine: update and overview. Curr Med Chem 27:362–379. https://doi.org/10.2174/0929867326666190827153532

    Article  CAS  PubMed  Google Scholar 

  28. Yamase T (2005) Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J Mater Chem 15:4773–4782. https://doi.org/10.1039/B504585A

    Article  CAS  Google Scholar 

  29. Aureliano M, Gumerova NI, Sciortino G, Garribba E, Rompel A, Crans DC (2021) Polyoxovanadates with emerging biomedical activities. Coord Chem Rev 447:214143. https://doi.org/10.1016/j.ccr.2021.214143

    Article  CAS  Google Scholar 

  30. Lu F, Wang M, Li N, Tang B (2021) Polyoxometalate-based nanomaterials toward efficient cancer diagnosis and therapy. Chemistry 27(21):6422–6434. https://doi.org/10.1002/chem.202004500

    Article  CAS  PubMed  Google Scholar 

  31. Izarova NV, Pope MT, Kortz U (2012) Noble metals in polyoxometalates. Angew Chem Int Ed 51(38):9492–9510. https://doi.org/10.1002/anie.201202750

    Article  CAS  Google Scholar 

  32. Yang P, Kortz U (2018) Discovery and evolution of polyoxopalladates. Acc Chem Res 51(7):1599–1608. https://doi.org/10.1021/acs.accounts.8b00082

    Article  CAS  PubMed  Google Scholar 

  33. Chubarova EV, Dickman MH, Keita B, Nadjo L, Miserque F, Mifsud M, Arends IWCE, Kortz U (2008) Self-Assembly of a heteropolyoxopalladate nanocube: [PdII13AsV8O34(OH)6]8−. Angew Chem Int Ed 47(49):9542–9546. https://doi.org/10.1002/anie.200803527

    Article  CAS  Google Scholar 

  34. Yang P, Xiang Y, Lin Z, Bassil BS, Cao J, Fan L, Fan Y, Li M-X, Jiménez-Lozano P, Carbó JJ, Poblet JM, Kortz U (2014) Alkaline earth guests in polyoxopalladate chemistry: from nanocube to nanostar via an open-shell structure. Angew Chem Int Ed 53(44):11974–11978. https://doi.org/10.1002/anie.201407090

    Article  CAS  Google Scholar 

  35. Izarova NV, Dickman MH, Biboum RN, Keita B, Nadjo L, Ramachandran V, Dalal NS, Kortz U (2009) Heteropoly-13-palladates(II) [PdII13(AsVPh)8O32]6- and [PdII13SeIV8O32]6-. Inorg Chem 48(16):7504–7506. https://doi.org/10.1021/ic900953a

    Article  CAS  PubMed  Google Scholar 

  36. Yang P, Ma T, Lang Z, Misirlic-Dencic S, Isakovic AM, Bényei A, Čolović MB, Markovic I, Krstić DZ, Poblet JM, Lin Z, Kortz U (2019) Tetravalent metal ion guests in polyoxopalladate chemistry: synthesis and anticancer activity of [MO8Pd12(PO4)8]12- (M = SnIV, PbIV). Inorg Chem 58(17):11294–11299. https://doi.org/10.1021/acs.inorgchem.9b01129

    Article  CAS  PubMed  Google Scholar 

  37. Aravindan N, Herman T, Aravindan S (2020) Emerging therapeutic targets for neuroblastoma. Expert Opin Ther Targets 24(9):899–914. https://doi.org/10.1080/14728222.2020.1790528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hua Y, Zhou N, Zhang J, Zhang Z, Li N, Wang J, Zheng W, Li X, Wang F, Zhang L, Hou L (2020) Isatin inhibits the invasion and metastasis of SH-SY5Y neuroblastoma cells in vitro and in vivo. Int J Oncol 58(1):122–132. https://doi.org/10.3892/ijo.2020.5144

    Article  CAS  PubMed  Google Scholar 

  39. Misirlić Denčić S, Poljarević J, Isakovic AM, Marković I, Sabo TJ, Grgurić-Šipka S (2017) Antileukemic action of novel diamine Pt(II) halogenido complexes: comparison of the representative novel Pt(II) with corresponding Pt(IV) complex. Chem Biol Drug Des 90(2):262–271. https://doi.org/10.1111/cbdd.12945

    Article  CAS  PubMed  Google Scholar 

  40. Savić A, Misirlić-Denčić S, Dulović M, Mihajlović-Lalić LE, Jovanović M, Grgurić-Šipka S, Marković I, Sabo TJ (2014) Synthesis, characterization and ROS-mediated cytotoxic action of novel (S, S)-1,3-propanediamine-N, N′-di-2-(3-cyclohexyl)propanoic acid and corresponding esters. Bioorg Chem 54:73–80. https://doi.org/10.1016/j.bioorg.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  41. Raicevic N, Mladenovic A, Perovic M, Harhaji L, Miljkovic D, Trajkovic V (2005) Iron protects astrocytes from 6-hydroxydopamine toxicity. Neuropharmacology 48(5):720–731. https://doi.org/10.1016/j.neuropharm.2004.12.003

    Article  CAS  PubMed  Google Scholar 

  42. Atale N, Gupta S, Yadav U, Rani V (2014) Cell-death assessment by fluorescent and nonfluorescent cytosolic and nuclear staining techniques. Microsc-JPN 255(1):7–19. https://doi.org/10.1111/jmi.12133

    Article  CAS  Google Scholar 

  43. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191. https://doi.org/10.1016/0014-4827(88)90265-0

    Article  CAS  PubMed  Google Scholar 

  44. Gajski G, Garaj-Vrhovac V, Oreščanin V (2008) Cytogenetic status and oxidative DNA-damage induced by atorvastatin in human peripheral blood lymphocytes: standard and Fpg-modified comet assay. Toxicol Appl Pharm 231(1):85–93. https://doi.org/10.1016/j.taap.2008.03.013

    Article  CAS  Google Scholar 

  45. Møller P, Azqueta A, Boutet-Robinet E, Koppen G, Bonassi S, Milić M, Gajski G, Costa S, Teixeira JP, Costa Pereira C, Dusinska M, Godschalk R, Brunborg G, Gutzkow KB, Giovannelli L, Cooke MS, Richling E, Laffon B, Valdiglesias V, Langie SAS (2020) Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results. Nat Protoc 15(12):3817–3826. https://doi.org/10.1038/s41596-020-0398-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qu X, Feng H, Ma C, Yang Y, Yu X (2017) Synthesis, crystal structure and anti-tumor activity of a novel 3D supramolecular compound constructed from Strandberg-type polyoxometalate and benzimidazole. Inorg Chem Commun 81:22–26. https://doi.org/10.1016/j.inoche.2017.04.023

    Article  CAS  Google Scholar 

  47. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157–1180. https://doi.org/10.1007/s00204-013-1034-4

    Article  CAS  PubMed  Google Scholar 

  48. Ramirez MLG, Salvesen GS (2018) A primer on caspase mechanisms. Semin Cell Dev Biol 82:79–85. https://doi.org/10.1016/j.semcdb.2018.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M, Misso G (2020) Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 98:139–153. https://doi.org/10.1016/j.semcdb.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  50. Ogata A, Yanagie H, Ishikawa E, Morishita Y, Mitsui S, Yamashita A, Hasumi K, Takamoto S, Yamase T, Eriguchi M (2008) Antitumour effect of polyoxomolybdates: induction of apoptotic cell death and autophagy in in vitro and in vivo models. Br J Cancer 98:399–409. https://doi.org/10.1038/sj.bjc.6604133

    Article  CAS  PubMed  Google Scholar 

  51. Zhou Z, Zhang D, Yang L, Ma P, Si Y, Kortz U, Niu J, Wang J (2013) Nona-copper(II)-containing 18-tungsto-8-arsenate(III) exhibits antitumor activity. Chem Commun 49:5189–5191. https://doi.org/10.1039/c3cc41628c

    Article  CAS  Google Scholar 

  52. Alqatati A, Hamad Elgazwy A-SS, Aliwaini S (2020) Newly synthesized palladium (II) complex ASH10 induces apoptosis and autophagy in breast cancer cells. Int J Cancer Res 16(2):40–47. https://doi.org/10.3923/ijcr.2020.40.47

    Article  CAS  Google Scholar 

  53. Zhang L, Chen X, Wu J, Ding S, Wang X, Lei Q, Fang W (2018) Palladium nanoparticles induce autophagy and autophagic flux blockade in Hela cells. RSC Adv 8(8):4130–4141. https://doi.org/10.1039/c7ra11400a

    Article  CAS  Google Scholar 

  54. Sakai H, Kokura S, Ishikawa T, Tsuchiya R, Okajima M, Matsuyama T, Adachi S, Katada K, Kamada K, Uchiyama K, Handa O, Takagi T, Yagi N, Naito Y, Yoshikawa T (2013) Effects of anticancer agents on cell viability, proliferative activity and cytokine production of peripheral blood mononuclear cells. J Clin Biochem Nutr 52(1):64–71. https://doi.org/10.3164/jcbn.12-60

    Article  CAS  PubMed  Google Scholar 

  55. Smrečki N, Rončević T, Jović O, Kukovec BM, Maravić A, Gajski G, Čikeš-Čulić V (2019) Copper(II) complexes with N′-methylsarcosinamide selective for human bladder cancer cells. Inorg Chim Acta 488:312–320. https://doi.org/10.1016/j.ica.2019.01.013

    Article  CAS  Google Scholar 

  56. Zhang Z-M, Duan X, Yao S, Wang Z, Lin Z, Li Y-G, Long L-S, Wang E-B, Lin W (2016) Cation-mediated optical resolution and anticancer activity of chiral polyoxometalates built from entirely achiral building blocks. Chem Sci 7:4220–4229. https://doi.org/10.1039/C5SC04408A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ogata A, Mitsui S, Yanagie H, Kasano H, Hisa T, Yamase T, Eriguchi M (2005) Novel anti-tumor agent, polyoxomolybdate induces apoptotic cell death in AsPC-1 human pancreatic cancer cells. Biomed Pharmacother 59:240–244. https://doi.org/10.1016/j.biopha.2004.11.008

    Article  CAS  PubMed  Google Scholar 

  58. Kacar O, Adiguzel Z, Yilmaz VT, Cetin Y, Cevatemre B, Arda N, Baykal AT, Ulukaya E, Acilan C (2014) Evaluation of the molecular mechanisms of a palladium(II) saccharinate complex with terpyridine as an anticancer agent. Anti-cancer Drug 25(1):17–29. https://doi.org/10.1097/CAD.0b013e328364c6ad

    Article  CAS  Google Scholar 

  59. Illán-Cabeza NA, García-García AR, Martínez-Martos JM, Ramírez-Expósito MJ, Moreno-Carretero MN (2013) Antiproliferative effects of palladium(II) complexes of 5-nitrosopyrimidines and interactions with the proteolytic regulatory enzymes of the renin–angiotensin system in tumoral brain cells. J Inorg Biochem 126:118–127. https://doi.org/10.1016/j.jinorgbio.2013.06.005

    Article  CAS  PubMed  Google Scholar 

  60. Rocha FV, Barra CV, Netto AV, Mauro AE, Carlos IZ, Frem RC, Ananias SR, Quilles MB, Stevanato A, da Rocha MC (2010) 3,5-Dimethyl-1-thiocarbamoylpyrazole and its Pd(II) complexes: synthesis, spectral studies and antitumor activity. Eur J Med Chem 45(5):1698–1702. https://doi.org/10.1016/j.ejmech.2009.12.073

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study received funding from the Ministry of Education, Science and Technological Development, Republic of Serbia (grant agreements no. 451-03-9/2021-14/200110 and 451-03-9/2021-14/200017), the Institute for Medical Research and Occupational Health, Zagreb, Croatia, the German Research Council (DFG, KO-2288/20-1) and Jacobs University. The authors also gratefully acknowledge the bilateral projects: Serbia-Germany (no. 451-03-01038/2015-09/16, DAAD-PPP) and Serbia-Croatia (no. 337-00-205/2019-09/19), and COST Actions: CMST CM1203—PoCheMoN, CA16113 – CliniMARK, and CA15132 – hCOMET. MČ and DK would like to thank COST Action CA16113 – CliniMARK for supporting this research with Short-Term Scientific Mission (STSM 44119 and 44120). Figure 1 is generated with Diamond, version 3.2 (Crystal Impact GbR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonja Misirlic-Dencic, Ulrich Kortz or Danijela Krstić.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent for publication

All authors agreed with the content of the paper and gave consent for submission and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 169 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isakovic, A.M., Čolović, M.B., Ma, T. et al. Selected polyoxopalladates as promising and selective antitumor drug candidates. J Biol Inorg Chem 26, 957–971 (2021). https://doi.org/10.1007/s00775-021-01905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01905-4

Keywords

Navigation