Skip to main content
Log in

Demonstration of a three-dimensional dynamically adaptive atmospheric dynamic framework for the simulation of mountain waves

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

In this paper, Fluidity-Atmosphere, representative of a three-dimensional (3D) non-hydrostatic Galerkin compressible atmospheric dynamic framework, is generated to resolve large-scale and small-scale phenomena simultaneously. This achievement is facilitated by the use of non-hydrostatic equations and the adoption of a flexible 3D dynamically adaptive mesh where the mesh is denser in areas with higher gradients of variable solutions and relatively sparser in the rest of the domain while maintaining promising accuracy and reducing computational resource requirements. The dynamic core is formulated based on anisotropic tetrahedral meshes in both the horizontal and vertical directions. The performance of the adaptive mesh techniques in Fluidity-Atmosphere is evaluated by simulating the formation and propagation of a non-hydrostatic mountain wave. The 2D anisotropic adaptive mesh shows that the numerical solution is in good agreement with the analytic solution. The variation in the horizontal and vertical resolutions has a strong impact on the smoothness of the results and maintains convergence even at high resolutions. When the simulation is extended to 3D, Fluidity-Atmosphere shows stable and symmetric results in the benchmark test cases. The flows over a bell-shaped mountain are resolved quite smoothly. For steep mountains, Fluidity-Atmosphere performs very well, which shows the potential of using 3D adaptive meshes in atmospheric modeling. Finally, as an alternative cut-cell mesh in Fluidity-Atmosphere, the anisotropic adaptive mesh coupled with the Galerkin method provides an alternative accurate representation of terrain-induced flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

reproduced from Gallus and Klemp (2000); b and c: the solutions of the CV1 method; d and e: the solutions of the CV2 method; f and g: the solutions of the CG method. b, d and f are for a fixed mesh, while c, e and g are for an adaptive mesh

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Ahmad N, Bacon D, Hall M, Sarma A (2006) Application of the multidimensional positive definite advection transport algorithm (MPDATA) to environmental modelling on adaptive unstructured grids. Int J Numer Methods Fluids 50:1247–1268

    Article  Google Scholar 

  • AMCG (2014) Fluidity manual. Applied Modelling and Computation Group, Imperial College London, URL http://fluidityproject.github.io/support.html

  • Bacon DP, Ahmad NN, Boybeyi Z, Dunn TJ, Hall MS, Lee PCS, Sarma RA, Turner MD (1999) A dynamically adapting weather and dispersion model: the operational multiscale environment model with grid adaptivity (OMEGA). Mon Wea Rev 128:2044–2076. https://doi.org/10.1175/1520-0493(2000)128%3c2044:ADAWAD%3e2.0.CO;2

    Article  Google Scholar 

  • Chen C, Xiao F, Li X (2011) An adaptive multimoment global model on a cubed sphere. Mon Wea Rev 139:523–548

    Article  Google Scholar 

  • Doms G, Baldauf M (2018) A description of the nonhydrostatic regional model COSMO-Model. Part I: Dynamics and Numerics. Consortium for small-scale modelling (COSMO-Model 5.5) Techical Report DWD Germany, http://www.cosmo-model.org/content/model/documentation/core/default.htm

  • Farrell P, Piggott M, Pain CC, Gorman G, Wilson C (2009) Conservative interpolation between unstructured meshes via supermesh construction. Comput Method Appl M 198:2632–2642

    Article  Google Scholar 

  • Ford R, Pain CC, Piggot M, Goddard A, Oliveria C, Umpleby A (2004) A nonhydrostatic finite-element model for threee-dimensional stratified oceanic flows. Part I: model formulation. Mon Wea Rev 132:2816–2831

    Article  Google Scholar 

  • Gal-Chen T, Somerville R (1975) On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J Comput Phys 17:209–228

    Article  Google Scholar 

  • Gallus WA, Klemp JB (2000) Behavior of flow over step orography. Mon Wea Rev 128:1153–1164

    Article  Google Scholar 

  • Garcia-Menendez F, Odman M (2011) Adaptive grid use in air quality modelling. Atmosphere 2(3):484–509

    Article  Google Scholar 

  • Giraldo F, Restelli M (2008) A study of spectral element and discontinuous galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modelling: Equation sets and test cases. J Comput Phys 227:3849–3877

    Article  Google Scholar 

  • Giraldo F, Warburton T (2008) A high-order triangular discontinuous galerkin oceanic shallow water model. Int J Numer Methods Fluids 56:899–925

    Article  Google Scholar 

  • Good B, Gadian A, Lock S, Ross A (2014) Performance of the cut-cell method of representing orography in idealized simulations. Atmos Sci Lett 15:44–49

    Article  Google Scholar 

  • Ikawa M (1988) Comparison of some schemes for nonhydrostatic models with orography. J Meteor Soc Japan 66:753–776

    Article  Google Scholar 

  • Iselin JP (2002) Dynamic grid adaptation using the mpdata scheme. Mon Wea Rev 130:1026–1039. https://doi.org/10.1175/1520-0493(2002)130%3c1026:DGAUTM%3e2.0.CO;2

    Article  Google Scholar 

  • Jablonowski C, Oehmke R, Stout Q (2009) Block-structured adaptive meshes and reduced grids for atmospheric general circulation models. Philos Trans R Soc A 367:4497–4522

    Article  Google Scholar 

  • Janjic Z (2003) A nonhydrostatic model based on a new approach. Meterol Atmos Phys 82:271–285

    Article  Google Scholar 

  • Karamchandani P, Vijayaraghavan K, Yarwood G (2011) Subgrid scale plume modelling. Atmosphere 2(4):389–406

    Article  Google Scholar 

  • Klemp JB (2011) A terrain-following coordinate with smoothed coordinate surfaces. Mon Wea Rev 139:2163–2169

    Article  Google Scholar 

  • Kopera M, Giraldo F (2014) Analysis of adaptive mesh refinement for imex discontinuous galerkin solutions of the compressible euler equations with application to atmospheric simulations. J Comput Phys 275:92–117

    Article  Google Scholar 

  • Kühnlein C (2011) Solution-adaptive moving mesh solver for geophysical flows. Ludwig-Maximilians-Universität München 1–14, https://core.ac.uk/download/pdf/11032937.pdf.

  • Leuenberger D, Koller O, Fuhrer O, Schär C (2010) A generalization of the sleve vertical coordinate. Mon Wea Rev 138:3683–3689

    Article  Google Scholar 

  • Li X, Chen D, Peng X, Takahashi K, Xiao F (2008) A multimoment finite volume shallow water model on Yin-Yang overset spherical grid. Mon Wea Rev 136:3066–3086

    Article  Google Scholar 

  • Li Y, Wang B, Wang D (2012) Anewapproach to implement sigma coordinate in a numerical model. Commun Computat Phys 12:1033–1050

    Article  Google Scholar 

  • Li Y, Wang B, Wang D, Li J, Dong L (2014) An orthogonal terrain-following coordinate and its preliminary tests using 2-D idealized advection experiments. Geosci Model Dev 7:1767–1778

    Article  Google Scholar 

  • Li J, Li Y, Wang B (2016a) Characteristics of pressure gradient errors in a terrain-following coordinate. Atmos Oceanic Sci Lett 9(3):211–218

    Article  Google Scholar 

  • Li J, Li Y, Wang B (2016b) Pressure gradient errors in an alternative approach of implementing sigma coordinate: geometric analyses and idealized experiments. Atmos Oceanic Sci Lett 9(4):270–276

    Article  Google Scholar 

  • Li J, Zheng J, Zhu J, Fang F, Pain CC, Steppeler J, Navon MI, Xiao H (2018) Performance of adaptive unstructured mesh modelling in idealized advection cases over steep terrains. Atmosphere 9:444

    Article  Google Scholar 

  • Lilly D, Klemp JB (1979) The effect of terrain shape on non-linear hydrostatic mountain waves. J Fluid Mech 95:241–261

    Article  Google Scholar 

  • Lock SJ, Bitzer HW, Coals A, Gadian A, Mobbs S (2012) Demonstration of a cut-cell representation of 3D orography for studies of atmospheric flows over very steep hills. Mon Wea Rev 140:411–424

    Article  Google Scholar 

  • Marras S, Kelly JF, Moragues M, Müller A, Kopera MA, Vázquez M, Giraldo FX, Houzeaux G, Jorba O (2016) A review of element-based galerkin methods for numerical weather prediction: finite element, spectral elements, and discontinuous galerkin. Arch Computat Methods Eng 23:673–722. https://doi.org/10.1007/s11831-015-9152-1

    Article  Google Scholar 

  • Müller A, Behrens J, Giraldo F, Wirth V (2013) Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments. J Comput Phys 235:371–393

    Article  Google Scholar 

  • Nair R, Thomas S, Loft R (2005) A discontinuous Galerkin global shallow water model. Mon Wea Rev 133:876–888

    Article  Google Scholar 

  • Nishikawa Y, Satoh M (2016) A conserved topographical representation scheme using a thin-wall approximation in z-coordinate. SOLA 12:232–236. https://doi.org/10.2151/sola.2016-046

    Article  Google Scholar 

  • Odman M, Khan M (2002) Adaptive grid air qualitymodel: Application to an ozone episode. In: Proceedings of the 12th joint conference on the applications of air pollution meteorology with the air and waste management association norfolk VA USA

  • Odman M, Khan M, Srivastava R, McRae D (2004) Initial application of the adaptive grid air quality model, in book: Air Pollution Modeling and Its Application XV. Springer 319–328.

  • Pain CC, Umpleby A, Oliveira CD, Goddard A (2001) Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations. Comput Method Appl M 190:3771–3796

    Article  Google Scholar 

  • Pain CC, Piggott MD, Goddard AJH, Fang F, Gorman GJ, Marshall DP, EatonMD PPW, Oliveira CRE (2005) Three dimensional unstructured mesh ocean modelling. Ocean Model 10:5–33

    Article  Google Scholar 

  • Phillips NA (1957) A coordinate system having some special advantages for numerical forecasting. J Meteor 14:184–185

    Article  Google Scholar 

  • Pielke RA, Cotton WR, Walko RL, Tremback CJ, Lyons WA, Grasso LD, Nicholls ME, Moran MD, Wesley DA, Lee TJ, Copeland JH (1992) A compressible meteorological modeling system–RAMS. Meterol Atmos Phys 49:69–91

    Article  Google Scholar 

  • Piggott M, Farrell P, Wilson C, Gorman G, Pain CC (2009) Anisotropic mesh adaptivity for multi-scale ocean modelling. Philos T R Soc A 367:4591–4611

    Article  Google Scholar 

  • Saito K, Doms G, Schättler U, Steppeler J (1998) 3D mountain waves by the LOKAL model of DWD and the MRI mesoscale nonhydrostatic model. Pap Meteor Geophys 49:7–19

    Article  Google Scholar 

  • Savre J, Percival J, Herzog M, Pain CC (2016) Two-dimensioanl evaluation of ATHAM-FLUIDITY, a nonhydrostatic atmospheric model using mixed continuous/discontinuous finite elements and anisotropic grid optimization. Mon Wea Rev 144:4349–4372. https://doi.org/10.1175/MWR-D-15-0398.1

    Article  Google Scholar 

  • Schär C, Leuenberger D, Fuhrer O, Lüthi D, Girard C (2002) A new terrain-following vertical coordinate formulation for atmospheric prediction models. Mon Wea Rev 130:2459–2480

    Article  Google Scholar 

  • Shaw J, Weller H (2016) Comparison of terrain-following and cut-cell grids using a nonhydrostatic model. Mon Wea Rev 144:2085–2099

    Article  Google Scholar 

  • Skamarock W, Klemp JB (1993) Adaptive grid refinement for two-dimensional and three-dimensional nonhydrostatic atmospheric flow. Mon Wea Rev 121:788–804

    Article  Google Scholar 

  • Skamarock W, Oliger J, Street R (1989) Adaptive grid refinement for numerical weather prediction. J Comput Phys 80:27–60

    Article  Google Scholar 

  • Skamarock W, Klemp JB, Dudhia J, GIll D, Baker D, WangW, Powers J (2007) A description of the advanced research WRF Version 2. Tech Rep NCAR TN STR, 468.

  • St-Cyr A, Jablonowski C, Dennis J, Henry H, Thomas S (2008) A comparison of two shallow water models with noncomforming adaptive grids. Mon Wea Rev 136(6):1898–1922

    Article  Google Scholar 

  • Steppeler J, Minotte HBM, Bonaventura L (2002) Nonhydrostatic atmospheric modeling using a z-coordinate representation. Mon Wea Rev 130:2143–2149

    Article  Google Scholar 

  • Steppeler J, Bitzer HW, Janjic Z, Schättler U, Prohl P, Gjertsen U, Torrisi L, Parfinievicz J, Avgoustoglou E, Damrath U (2006) Prediction of clouds and rain using a z-coordinate nonhydrostatic model. Mon Wea Rev 134:3625–3643

    Article  Google Scholar 

  • Steppeler J, Park S, Dobler A (2011) A 5-day hindcast experiment using a cut-cell z-coordinate model. Atmos Sci Lett 12:340–344

    Article  Google Scholar 

  • Steppeler J, Park S, Dobler A (2013) Forecasts covering one month using a cut-cell model. Geosci Model Dev 6:875–882

    Article  Google Scholar 

  • Steppeler J, Li J, Navon IM, Fang F, Xiao Z (2019) Medium range forecasts using cut-cells: a sensitivity study. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-019-00681-w

    Article  Google Scholar 

  • Sundqvist H (1976) On vertical interpolation and truncation in connexion with use of sigma system models. Atmosphere 14:37–52

    Article  Google Scholar 

  • Weller H, Shahrokhi A (2014) Curl-free pressure gradients over orography in a solution of the fully compressible euler equations with implicit treatment of acoustic and gravity waves. Mon Wea Rev 142:4439–4457

    Article  Google Scholar 

  • Weller H, Browne P, Budd C, Cullen M (2016) Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge-Ampère type equation. J Comput Phys 308:102–123. https://doi.org/10.1016/j.jcp.2015.12.018

    Article  Google Scholar 

  • Yamazaki H, Satomura T (2010) Nonhydrostatic atmospheric modeling using a combined Cartesian grid. Mon Wea Rev 132:3932–3945

    Article  Google Scholar 

  • Yang X, Hu J, Chen D, Zhang H, Shen X, Chen J, Ji L (2008) Verification of grapes unified global and reginal numerical weather prediction model dynamic core. Chin Sci Bull 53:3458–3464

    Google Scholar 

  • Yelash L, Müller A, Lukacova-Medvidova M, Giraldo F, Wirth V (2014) Adaptive discontinuous evolution Galerkin method for dry atmospheric flow. J Comput Phys 268:106–133

    Article  Google Scholar 

  • Zängl G (2012) Extending the numerical stability limit of terrain-following coordinate models over steep slopes. Mon Wea Rev 140:3722–3722

    Article  Google Scholar 

  • Zängl G, Reinert D, Ripodas P, Baldauf M (2015) The ICON (icosahedral non-hydrostatic) modelling framework of DWD and MPI-M: description of the non-hydrostatic dynamical core. Quart J Roy Meteor Soc 141:563–579

    Article  Google Scholar 

  • Zheng J, Zhu J, Wang Z, Fang F, Pain CC, Xiang J (2015) Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9). Geosci Model Dev 8:3421–3440

    Article  Google Scholar 

  • Zheng J, Fang F, Wang Z, Zhu J, Li J, Li J, Xiao H, Pain CC (2020) A new anisotropic adaptivemesh photochemical model for ozone formation in power plant plumes. Atmos Environ 229: 117431.

Download references

Acknowledgements

No author reported any potential conflicts of interest. This work is jointly supported by the National Natural Science Foundation of China (Grant No. 41905093), the China Scholarship Council (No. 201904910136) and Special Research Assistant Project of Chinese Academy of Sciences. Drs. Fang and Wu acknowledge the support of UK EPSRC grant: Managing Air for Green Inner Cities (MAGIC: Grant No. EP/N010221/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Li.

Additional information

Responsible Editor: Silvia Trini Castelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Fang, F., Steppeler, J. et al. Demonstration of a three-dimensional dynamically adaptive atmospheric dynamic framework for the simulation of mountain waves. Meteorol Atmos Phys 133, 1627–1645 (2021). https://doi.org/10.1007/s00703-021-00828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-021-00828-8

Navigation