Skip to main content
Log in

AXISYMMETRIC WAVE PROPAGATION IN FUNCTIONALLY GRADE CYLINDER WITH SMOOTH RADIAL DISTRIBUTION OF PHYSICAL PARAMETERS

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

Novel approximate methods of wave propagation analysis are developed for functionally graded cylinders with mass and elastic parameters described by continuously differentiable functions of radius. Two of these methods relate to embedding of boundary value problems into corresponding initial value problems and the third method demonstrates methodology of discretization of the physical parameters over cylinder’s cross-section. Frequency spectra diagrams of dilatational and shear waves are plotted for travelling and evanescent regimes. Diagrams of phase and group velocities are plotted for dilatational travelling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. K. F. Graff, Wave Motion in Elastic Solids (Dover Publications, New York, 1991).

    MATH  Google Scholar 

  2. A. C. Eringen and E. S. Suhubi, Elastodynamics. Volume II: Linear Theory (Academic Press Inc., New York, 1975).

  3. L. Elmaimouni, J. E. Lefebvre, T. Gryba, and V. Zhang, “Acoustic wave propagation in fuctionally graded material (FGM) cylinders,” in Proceedings of the CFA/DAGA’04, Strasbourg, 22-25 March, 2004 (Strasbourg, 2004), pp. 1199–1200.

  4. L. Elmaimouni, J. E. Lefebvre, V. Zhang, and T. Gryba, “A polynomial approach to the analysis of guided waves in anisotropic cylinders of infinite length,” Wave Motion 42, 177–189 (2005). https://doi.org/10.1016/j.wavemoti.2005.01.005

    Article  MATH  Google Scholar 

  5. V. Giurgiutiu and M. F. Haider, “Propagating, evanescent, and complex wavenumber guided waves in high-performance composites,” Materials 12, 269–299 (2019). https://doi.org/10.3390/ma12020269

    Article  ADS  Google Scholar 

  6. M. Dorduncu, M. K. Aparak, and H. P. Cheruuri, “Elastic wave propagation in functionally graded circular cylinders,” Composites, Part B 73, 35–48 (2015). https://doi.org/10.1016/j.compositesb.2012.05.043

    Article  Google Scholar 

  7. S. M. Hosseini, “Analysis of elastic wave propagation in a functionally graded thick hollow cylinder using a hybrid mesh-free method,” Eng. Anal. Bound. Elem. 36 (11), 1536–1545 (2012). https://doi.org/10.1016/j.enganabound.2012.05.001

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Hu and Z. Yu, “Numerical simulation of elastic wave propagation in functionally graded cylinders using time-domain spectral finite element method,” Adv. Mech. Eng. 9 (11), 1–17 (2017).

    Google Scholar 

  9. Y. O. Yang, C. Liang, and J. W. Zu, “Wave propagation in functionally graded cylindrical nanoshels based on nonlocal Flugge shell theory,” Eur. Phys. J. Plus 134, 233 (2019). https://doi.org/10.1140/epjp/i2019-12543-0

    Article  Google Scholar 

  10. M. Shatalov, E. V. Murashkin, E. T. Akinlabi, et al., “Axisymmetric wave propagation in functionally graded cylinder with isotropic concentric layers,” Mech. Solids 55, (4), 595–605 (2020). https://doi.org/10.3103/S0025654420040135

    Article  ADS  Google Scholar 

  11. W. H. Press, S. A. Teukolsky, W.T . Vetterling, and B. P. Flannery, Numerical Recipes, 3rd ed. (Cambridge Univ. Press, Cambridge, 2007).

    MATH  Google Scholar 

Download references

Funding

The work was financially supported by SA (NRF)/RUSSIA (RFBR) joint science and technology research collaboration (project No. 19-51-60001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Shatalov, E. Murashkin or R. Mahamood.

APPENDIX

APPENDIX

System of axisymmetric dilatational vibration of cylinder with radial dependence of its physical (mass density and elastic) parameters is as follows:

$$\begin{array}{*{20}{c}} {\rho \left( r \right)\frac{{{{\partial }^{2}}u}}{{\partial {{t}^{2}}}} = \frac{{\partial \sigma _{{rr}}^{{}}}}{{\partial r}} + \frac{{\partial \sigma _{{rz}}^{{}}}}{{\partial z}} + \frac{{\sigma _{{rr}}^{{}} - \sigma _{{zz}}^{{}}}}{r}} \\ {\rho \left( r \right)\frac{{{{\partial }^{2}}w}}{{\partial {{t}^{2}}}} = \frac{{\partial \sigma _{{rz}}^{{}}}}{{\partial r}} + \frac{{\partial \sigma _{{zz}}^{{}}}}{{\partial z}} + \frac{{\sigma _{{rz}}^{{}}}}{r},} \end{array}$$
(A.1)

where \(u = u\left( {t,r,z} \right)\), \({v} = 0\), \(w = w\left( {t,r,z} \right)\) are the radial and axial displacements correspondingly, t is time, r is radial coordinate and z is axial coordinate; ρ(r) is mass density; \({{\sigma }_{{rr}}}\), \({{\sigma }_{{\theta \theta }}}\), \({{\sigma }_{{zz}}}\), \({{\sigma }_{{rz}}}\) are stresses which are linearly dependent on strains due to Hook’s law:

$$\begin{gathered} \begin{array}{*{20}{c}} {\sigma _{{rr}}^{{}} = \lambda \left( r \right)\left( {{{\varepsilon }_{{rr}}} + {{\varepsilon }_{{\theta \theta }}} + {{\varepsilon }_{{zz}}}} \right) + 2\mu \left( r \right){{\varepsilon }_{{rr}}},} \\ {\sigma _{{\theta \theta }}^{{}} = \lambda \left( r \right)\left( {{{\varepsilon }_{{rr}}} + {{\varepsilon }_{{\theta \theta }}} + {{\varepsilon }_{{zz}}}} \right) + 2\mu \left( r \right){{\varepsilon }_{{\theta \theta }}},} \\ {\sigma _{{zz}}^{{}} = \lambda \left( r \right)\left( {{{\varepsilon }_{{rr}}} + {{\varepsilon }_{{\theta \theta }}} + {{\varepsilon }_{{zz}}}} \right) + 2\mu \left( r \right){{\varepsilon }_{{zz}}}} \end{array} \\ \sigma _{{rz}}^{{}} = \mu \left( r \right){{\varepsilon }_{{rz}}}, \\ \end{gathered} $$
(A.2)

where \(\lambda \left( r \right)\), \(\mu \left( r \right)\) are Lame’s elastic factors and \({{\varepsilon }_{{rr}}} = {{\varepsilon }_{{rr}}}\left( {t,r,z} \right)\), \({{\varepsilon }_{{\theta \theta }}} = {{\varepsilon }_{{\theta \theta }}}\left( {t,r,z} \right)\), \({{\varepsilon }_{{zz}}} = {{\varepsilon }_{{zz}}}\left( {t,r,z} \right)\), \({{\varepsilon }_{{rz}}} = {{\varepsilon }_{{rz}}}\left( {t,r,z} \right)\) are linearized strains:

$${{\varepsilon }_{{rr}}} = \frac{{\partial u}}{{\partial r}},\quad {{\varepsilon }_{{\theta \theta }}} = \frac{u}{r},\quad {{\varepsilon }_{{zz}}} = \frac{{\partial w}}{{\partial z}},\quad {{\varepsilon }_{{rz}}} = \frac{{\partial u}}{{\partial z}} + \frac{{\partial w}}{{\partial r}}$$
(A.3)

Substituting (A.2) in (A.1), we obtain the following we obtain the following system of axisymmetric dilatational vibration of the cylinder:

$$\begin{array}{*{20}{c}} {\rho \left( r \right)\frac{{{{\partial }^{2}}u}}{{\partial {{t}^{2}}}}}& = &{\left[ {\lambda \left( r \right) + 2\mu \left( r \right)} \right]\frac{{\partial {{\varepsilon }_{{rr}}}}}{{\partial r}} + \lambda \left( r \right)\left( {\frac{{\partial {{\varepsilon }_{{\theta \theta }}}}}{{\partial r}} + \frac{{\partial {{\varepsilon }_{{zz}}}}}{{\partial r}}} \right) + \mu \left( r \right)\left[ {\frac{{\partial {{\varepsilon }_{{rz}}}}}{{\partial r}} + \frac{2}{r}\left( {{{\varepsilon }_{{rr}}} - {{\varepsilon }_{{\theta \theta }}}} \right)} \right]} \\ {}&{}&{ + \frac{{d\lambda \left( r \right)}}{{dr}}\left( {{{\varepsilon }_{{rr}}} + {{\varepsilon }_{{\theta \theta }}} + {{\varepsilon }_{{zz}}}} \right) + 2\frac{{d\mu \left( r \right)}}{{dr}}{{\varepsilon }_{{rr}}},} \end{array}$$
$$\rho (r)\frac{{{{\partial }^{2}}w}}{{\partial {{t}^{2}}}} = \lambda (r)\left( {\frac{{\partial {{\varepsilon }_{{zz}}}}}{{\partial z}} + \frac{{\partial {{\varepsilon }_{{\theta \theta }}}}}{{\partial z}}} \right) + \left[ {\lambda (r) + 2\mu (r)} \right]\frac{{\partial {{\varepsilon }_{{zz}}}}}{{\partial z}} + \mu (r)\left( {\frac{{\partial {{\varepsilon }_{{rz}}}}}{{\partial r}} + \frac{{{{\varepsilon }_{{rz}}}}}{r}} \right) + \frac{{d\mu (r)}}{{dr}}{{\varepsilon }_{{rz}}}.$$
(A.4)

In the case of axisymmetric torsional vibration, the governing equation is:

$$\rho \left( r \right)\frac{{{{\partial }^{2}}{v}}}{{\partial {{t}^{2}}}} = \frac{{\partial \sigma _{{r\theta }}^{{}}}}{{\partial r}} + \frac{{\partial \sigma _{{\theta z}}^{{}}}}{{\partial z}} + \frac{{2\sigma _{{r\theta }}^{{}}}}{r},$$
(A.5)

where \({v} = {v}\left( {t,r,z} \right)\), \(u = w = 0\), and stresses are:

$$\sigma _{{r\theta }}^{{}} = \mu \left( r \right)\varepsilon _{{r\theta }}^{{}},\quad \sigma _{{\theta z}}^{{}} = \mu \left( r \right)\varepsilon _{{\theta z}}^{{}},$$
(A.6)

where strains are:

$$\varepsilon _{{r\theta }}^{{}} = \frac{{\partial {v}}}{{\partial r}} - \frac{{v}}{r},\quad \varepsilon _{{\theta z}}^{{}} = \frac{{\partial {v}}}{{\partial z}}.$$
(A.7)

Substituting (A.7) in (A.6) and further in (A.5), we obtain the following equation of axisymmetric shear vibration of the cylinder:

$$\rho \left( r \right)\frac{{{{\partial }^{2}}{v}}}{{\partial {{t}^{2}}}} = \mu \left( r \right)\left( {\frac{{\partial {{\varepsilon }_{{r\theta }}}}}{{\partial r}} + \frac{{\partial {{\varepsilon }_{{\theta z}}}}}{{\partial z}} + \frac{{2{{\varepsilon }_{{r\theta }}}}}{r}} \right) + \frac{{d\mu \left( r \right)}}{{dr}}{{\varepsilon }_{{r\theta }}}.$$
(A.8)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatalov, M., Murashkin, E., Mahamood, R. et al. AXISYMMETRIC WAVE PROPAGATION IN FUNCTIONALLY GRADE CYLINDER WITH SMOOTH RADIAL DISTRIBUTION OF PHYSICAL PARAMETERS. Mech. Solids 56, 571–585 (2021). https://doi.org/10.3103/S0025654421040154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421040154

Keywords:

Navigation