Skip to main content
Log in

FDwave3D: a MATLAB solver for the 3D anisotropic wave equation using the finite-difference method

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Seismic modeling plays an important role in geophysics and seismology for estimating the response of seismic sources in a given medium. In this work, we present a MATLAB-based package, FDwave3D, for synthetic wavefield and seismogram modeling in 3D anisotropic media. The seismic simulation is carried out using the finite-difference method over the staggered grid, and it is applicable to both active and passive surveys. The code package allows the incorporation of arbitrary source mechanisms and offers spatial derivative operators of accuracy up to tenth-order along with different types of boundary conditions. First, the methodological aspects of finite-difference method are briefly introduced. Then, the code has been tested and verified against the analytical solutions obtained for the homogeneous model. Further, the numerical examples of layered and overthrust models are presented to demonstrate its reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheriff, R.E., Geldart, L.P.: Exploration seismology. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  2. Grechka, V., Yaskevich, S.: Azimuthal anisotropy in microseismic monitoring: a Bakken case study. Geophysics. 79, KS1–KS12 (2014). https://doi.org/10.1190/geo2013-0211.1

    Article  Google Scholar 

  3. Stierle, E., Vavryčuk, V., Kwiatek, G., Charalampidou, E.-M., Bohnhoff, M.: Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy. Geophys. J. Int. 205, 38–50 (2016). https://doi.org/10.1093/gji/ggw009

    Article  Google Scholar 

  4. Foulger, G.R., Julian, B.R., Hill, D.P., Pitt, A.M., Malin, P.E., Shalev, E.: Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing. J. Volcanol. Geotherm. Res. 132, 45–71 (2004). https://doi.org/10.1016/S0377-0273(03)00420-7

    Article  Google Scholar 

  5. Šílený, J., Hill, D.P., Eisner, L., Cornet, F.H.: Non–double-couple mechanisms of microearthquakes induced by hydraulic fracturing. J. Geophys. Res. 114, B08307 (2009). https://doi.org/10.1029/2008JB005987

    Article  Google Scholar 

  6. Meek, R., Hull, R.A., Von der Hoya, A., Eaton, D.: 3-D Finite Difference Modeling of Microseismic Source Mechanisms in the Wolfcamp Shale of the Permian Basin. Presented at the Unconventional Resources Technology Conference (URTeC), San Antonio (2015)

    Google Scholar 

  7. Hobro, J., William, M., Calvez, J.L.: The finite-difference method in microseismic modeling: fundamentals, implementation, and applications. Leading Edge. 35, 362–366 (2016)

    Article  Google Scholar 

  8. Rodríguez-Pradilla, G., Eaton, D.W.: Finite-difference modelling of microseismicity associated with a hydraulic-fracturing stimulation in a coalbed methane reservoir. First Break. 36, 41–48 (2018)

    Article  Google Scholar 

  9. Carcione, J.M., Herman, G.C., ten Kroode, A.P.E.: Seismic modeling. Geophysics. 67, 1304–1325 (2002). https://doi.org/10.1190/1.1500393

    Article  Google Scholar 

  10. Moczo, P., Kristek, J., Gális, M.: The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  11. Carcione, J.M.: Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier, Amsterdam (2015)

    Google Scholar 

  12. Elsherbeni, A.Z., Demir, V.: The finite-difference time-domain: method for electromagnetics with MATLAB simulations. SciTech Publishing, an imprint of the IET, Edison (2016)

  13. Cui, X., Lines, L., Krebes, E.S., Peng, S.: Seismic Forward Modeling of Fractures and Fractured Medium Inversion. Springer Singapore, Singapore (2018)

    Book  Google Scholar 

  14. Bohlen, T.: Parallel 3-D viscoelastic finite difference seismic modelling. Comput. Geosci. 28, 887–899 (2002). https://doi.org/10.1016/S0098-3004(02)00006-7

    Article  Google Scholar 

  15. Torberntsson, K., Stiernström, V., Mattsson, K., Dunham, E.M.: A finite difference method for earthquake sequences in poroelastic solids. Comput. Geosci. 22, 1351–1370 (2018). https://doi.org/10.1007/s10596-018-9757-1

    Article  Google Scholar 

  16. Vireux, J.: P-SV wave propagation in heterogeneous media: velocity stress finite-difference method. Geophysics. 51, 889–901 (1986)

    Article  Google Scholar 

  17. Saenger, E.H., Gold, N., Shapiro, S.A.: Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion. 31, 77–92 (2000). https://doi.org/10.1016/S0165-2125(99)00023-2

    Article  Google Scholar 

  18. Cerjan, C., Kosloff, D., Kosloff, R., Reshef, M.: A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics. 50, 705–708 (1985). https://doi.org/10.1190/1.1441945

    Article  Google Scholar 

  19. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994). https://doi.org/10.1006/jcph.1994.1159

    Article  Google Scholar 

  20. Collino, F., Tsogka, C.: Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics. 66, 294–307 (2001)

    Article  Google Scholar 

  21. Saenger, E.H., Bohlen, T.: Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics. 69, 583–591 (2004). https://doi.org/10.1190/1.1707078

    Article  Google Scholar 

  22. Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am. 86, 1091–1106 (1996)

    Google Scholar 

  23. Pitarka, A.: 3D elastic finite-difference modeling of seismic motion using staggered grids with nonuniform spacing. Bull. Seismol. Soc. Am. 89, 54–68 (1999)

    Article  Google Scholar 

  24. Sheen, D.-H., Tuncay, K., Baag, C.-E., Ortoleva, P.J.: Parallel implementation of a velocity-stress staggered-grid finite-difference method for 2-D poroelastic wave propagation. Comput. Geosci. 32, 1182–1191 (2006). https://doi.org/10.1016/j.cageo.2005.11.001

    Article  Google Scholar 

  25. Thorbecke, J.W., Draganov, D.: Finite-difference modeling experiments for seismic interferometry. Geophysics. 76, H1–H18 (2011). https://doi.org/10.1190/geo2010-0039.1

    Article  Google Scholar 

  26. Malkoti, A., Vedanti, N., Tiwari, R.K.: An algorithm for fast elastic wave simulation using a vectorized finite difference operator. Comput. Geosci. 116, 23–31 (2018). https://doi.org/10.1016/j.cageo.2018.04.002

    Article  Google Scholar 

  27. Boyd, O.S.: An efficient Matlab script to calculate heterogeneous anisotropically elastic wave propagation in three dimensions. Comput. Geosci. 32, 259–264 (2006). https://doi.org/10.1016/j.cageo.2005.06.019

    Article  Google Scholar 

  28. Martin, R., Komatitsch, D.: An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation. Geophys. J. Int. 179, 333–344 (2009). https://doi.org/10.1111/j.1365-246X.2009.04278.x

    Article  Google Scholar 

  29. Michéa, D., Komatitsch, D.: Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards: accelerating a wave propagation code using GPUs. Geophys. J. Int. 182, 389–402 (2010). https://doi.org/10.1111/j.1365-246X.2010.04616.x

    Article  Google Scholar 

  30. Weiss, R.M., Shragge, J.: Solving 3D anisotropic elastic wave equations on parallel GPU devices. Geophysics. 78, F7–F15 (2013). https://doi.org/10.1190/geo2012-0063.1

    Article  Google Scholar 

  31. Köhn, D., De Nil, D., Kurzmann, A., Przebindowska, A., Bohlen, T.: On the influence of model parametrization in elastic full waveform tomography. Geophys. J. Int. 191, 325–345 (2012). https://doi.org/10.1111/j.1365-246X.2012.05633.x

    Article  Google Scholar 

  32. Rubio, F., Hanzich, M., Farrés, A., de la Puente, J., María Cela, J.: Finite-difference staggered grids in GPUs for anisotropic elastic wave propagation simulation. Comput. Geosci. 70, 181–189 (2014). https://doi.org/10.1016/j.cageo.2014.06.003

    Article  Google Scholar 

  33. Maeda, T., Takemura, S., Furumura, T.: OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth Planets Space. 69, 1–20 (2017). https://doi.org/10.1186/s40623-017-0687-2

    Article  Google Scholar 

  34. Fabien-Ouellet, G., Gloaguen, E., Giroux, B.: Time-domain seismic modeling in viscoelastic media for full waveform inversion on heterogeneous computing platforms with OpenCL. Comput. Geosci. 100, 142–155 (2017). https://doi.org/10.1016/j.cageo.2016.12.004

    Article  Google Scholar 

  35. Zhu, T.: Numerical simulation of seismic wave propagation in viscoelastic-anisotropic media using frequency-independent Q wave equation. Geophysics. 82, WA1–WA10 (2017). https://doi.org/10.1190/geo2016-0635.1

    Article  Google Scholar 

  36. Shi, P., Angus, D., Nowacki, A., Yuan, S., Wang, Y.: Microseismic full waveform modeling in anisotropic media with moment tensor implementation. Surv. Geophys. 39, 567–611 (2018). https://doi.org/10.1007/s10712-018-9466-2

    Article  Google Scholar 

  37. Sharma, G., Martin, J.: MATLAB®: a language for parallel computing. Int. J. Parallel Prog. 37, 3–36 (2009). https://doi.org/10.1007/s10766-008-0082-5

    Article  Google Scholar 

  38. Wüstefeld, A., Bokelmann, G., Zaroli, C., Barruol, G.: SplitLab: a shear-wave splitting environment in Matlab. Comput. Geosci. 34, 515–528 (2008). https://doi.org/10.1016/j.cageo.2007.08.002

    Article  Google Scholar 

  39. Yu, C., Zheng, Y., Shang, X.: Crazyseismic: a MATLAB GUI-based software package for passive seismic data preprocessing. Seismol. Res. Lett. 88, 410–415 (2017). https://doi.org/10.1785/0220160207

    Article  Google Scholar 

  40. Chapman, C.H.: Fundamentals of Seismic Wave Propagation. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  41. Thomsen, L.: Weak elastic anisotropy. Geophysics. 51, 1954–1966 (1986). https://doi.org/10.1190/1.1442051

    Article  Google Scholar 

  42. Levander, A.R.: Fourth-order finite-difference P-SV seismograms. Geophysics. 53, 1425–1436 (1988). https://doi.org/10.1190/1.1442422

    Article  Google Scholar 

  43. Igel, H., Mora, P., Riollet, B.: Anisotropic wave propagation through finite-difference grids. Geophysics. 60, 1203–1216 (1995). https://doi.org/10.1190/1.1443849

    Article  Google Scholar 

  44. Bohlen, T., De Nil, D., Koehn, D., Jetschny, S.: SOFI3D - Seismic Modeling with Finite Differences 3D - Acoustic and Viscoelastic Version. Karlsruhe Institute of Technology, Karlsruhe (2015)

    Google Scholar 

  45. Jost, M.L., Herrmann, R.B.: A student’s guide to and review of moment tensors. Seismol. Res. Lett. 60, 37–57 (1989). https://doi.org/10.1785/gssrl.60.2.37

    Article  Google Scholar 

  46. Burridge, R., Knopoff, L.: Body force equivalents for seismic dislocations. Bull. Seismol. Soc. Am. 54, 1875–1888 (1964)

    Article  Google Scholar 

  47. Gilbert, F.: Excitation of the normal modes of the earth by earthquake sources. Geophys. J. Int. 22, 223–226 (1971)

    Article  Google Scholar 

  48. Aki, K., Richards, P.G.: Quantitative seismology. University Science Books, Sausalito (2002)

    Google Scholar 

  49. Li, H.J., Wang, R.Q., Cao, S.Y.: Microseismic forward modeling based on different focal mechanisms used by the seismic moment tensor and elastic wave equation. J. Geophys. Eng. 12, 155–166 (2015)

    Article  Google Scholar 

  50. Li, D., Helmberger, D., Clayton, R.W., Sun, D.: Global synthetic seismograms using a 2-D finite-difference method. Geophys. J. Int. 197, 1166–1183 (2014). https://doi.org/10.1093/gji/ggu050

    Article  Google Scholar 

  51. Li, L., Chen, H., Wang, X.M.: Numerical simulation of microseismic wavefields with moment-tensor sources. In: 2016 Symposium on Piezoelectricity, Acoustic waves, and Device Applications, pp. 339–343 (2016)

    Chapter  Google Scholar 

  52. Chew, W.C., Liu, Q.H.: Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J. Comp. Acous. 04, 341–359 (1996). https://doi.org/10.1142/S0218396X96000118

    Article  Google Scholar 

  53. Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics. 72, SM155–SM167 (2007). https://doi.org/10.1190/1.2757586

    Article  Google Scholar 

  54. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. & Dev. 11, 215–234 (1967). https://doi.org/10.1147/rd.112.0215

    Article  Google Scholar 

  55. Robertsson, J.O.A., Blanch, J.O., Symes, W.W.: Viscoelastic finite-difference modeling. Geophysics. 59, 1444–1456 (1994). https://doi.org/10.1190/1.1443701

    Article  Google Scholar 

  56. Moczo, P.: 3D fourth-order staggered-grid finite-difference schemes: stability and grid dispersion. Bull. Seismol. Soc. Am. 90, 587–603 (2000). https://doi.org/10.1785/0119990119

    Article  Google Scholar 

  57. Aminzadeh, F., Jean, B., Kunz, T.: 3-D salt and overthrust models. Society of Exploration Geophysicists (1997)

    Google Scholar 

  58. Virieux, J., Operto, S.: An overview of full-waveform inversion in exploration geophysics. Geophysics. 74, WCC1–WCC26 (2009). https://doi.org/10.1190/1.3238367

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Peidong Shi from University Grenoble Alpes for providing the 3D overthrust model. We thank the Associate Editor Tristan van Leeuwen and an anonymous reviewer for reviewing the manuscript. Previous comments from Erik Koene and Joe Dellinger on the manuscript are also appreciated. The work is sponsored by the National Natural Science Foundation of China (Grant Nos. 42004115, 41872151), Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50762), the China Postdoctoral Science Foundation (Grant No. 2019 M652803).

Funding

The work is sponsored by the National Natural Science Foundation of China (Grant Nos. 42004115, 41872151), Hunan Provincial Natural Science Foundation of China (Grant No. 2019JJ50762), the China Postdoctoral Science Foundation (Grant No. 2019 M652803).

Code availability

The code package FDwave3D is available in MATLAB on GitHub at https://github.com/leileely/FDwave3D.

Author information

Authors and Affiliations

Authors

Contributions

L. Li contributed to method development and testing, and drafted the manuscript. J. Tan contributed to manuscript review and funding acquisition. D. Zhang, A. Malkoti, I. Abakumov, and Y. Xie contributed to code programming, testing, and revised the manuscript. The author(s) read and approved the final manuscript.

Corresponding authors

Correspondence to Jingqiang Tan or Dazhou Zhang.

Ethics declarations

Conflict of interest

We declare no conflicts of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Tan, J., Zhang, D. et al. FDwave3D: a MATLAB solver for the 3D anisotropic wave equation using the finite-difference method. Comput Geosci 25, 1565–1578 (2021). https://doi.org/10.1007/s10596-021-10060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10060-3

Keywords

Navigation