Skip to main content
Log in

Convergence acceleration of iterative sequences for equilibrium chemistry computations

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The modeling of thermodynamic equilibria leads to complex nonlinear chemical systems which are often solved with the Newton-Raphson method. But this resolution can lead to a non convergence or an excessive number of iterations due to the very ill-conditioned nature of the problem. In this work, we combine a particular formulation of the equilibrium system called the Positive Continuous Fraction method with two iterative methods, Anderson Acceleration method and Vector extrapolation methods (namely the reduced rank extrapolation and the minimal polynomial extrapolation). The main advantage of this approach is to avoid forming the Jacobian matrix. In addition, a strategy is used to improve the robustness of the Anderson acceleration method which consists in reducing the condition number of matrix of the least squares problem in the implementation of the Anderson acceleration so that the numerical stability can be guaranteed. We compare our numerical results with those obtained with the Newton-Raphson method on the Acid Gallic test and the 1D MoMas benchmark test case and we show the high efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahusborde, E., Ossmani, M.E., Id Moulay, M.: A fully implicit finite volume scheme for single phase flow with reactive transport in porous media. Math. Comput. Simulat. 164, 3–23 (2019)

    Article  Google Scholar 

  2. Ackerer, P.: Preface: Special issue on simulations of reactive transport: Results of the MoMaS benchmarks. Computat. Geosci. 14(3), 383 (2010)

    Article  Google Scholar 

  3. Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM 12, 547–560 (1965)

    Article  Google Scholar 

  4. Bourel, C., Choquet, C., Rosier, C., Tsegmid, M.: Modelling of shallow aquifers in interaction with overland water. Appl. Math. Model. 81, 727–751 (2020)

    Article  Google Scholar 

  5. Bourgeat, A., Bryant, S., Carrayrou, J., Dimier, A., Van Duijn, C.J., Kern, M., Knabner, P.: Benchmark reactive transport. Technical Report GDR MOMAS (2006)

  6. Brassard, P., Bodurtha, P.: A feasible set for chemical speciation problems. Comput. Geosci. 26, 277 (2000)

    Article  Google Scholar 

  7. Brezinski, C., Redivo Zaglia, M., Saad, Y.: Shanks sequence transformations and Anderson acceleration. SIAM Rev. 60, 646–669 (2018)

    Article  Google Scholar 

  8. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19, 577–593 (1965)

    Article  Google Scholar 

  9. Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits of vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)

    Article  Google Scholar 

  10. Carrayrou, J.: Modèlisation Du Transport De Solutés RÃⒸtifs En Milieu Poreux Saturé. ThéSe De Doctorat. Université Louis Pasteur, Strasbourg (2001)

    Google Scholar 

  11. Carrayrou, J.: Looking for some reference solutions for the reactive transport benchmark of MoMaS with SPECY. Comput Geosci 14, 393–403 (2010)

    Article  Google Scholar 

  12. Carrayrou, J., Mosé, R., Behra, P.: New efficient algorithm for solving thermodynamic chemistry. AIChE J. 48(4), 894–904 (2002)

    Article  Google Scholar 

  13. Carrayrou, J., Kern, M., Knabner, P.: Reactive transport benchmark of MoMaS. Computat. Geosci. 14, 385–392 (2010). https://doi.org/10.1007/s10596-009-9157-7

    Article  Google Scholar 

  14. Carrayrou, J., Hoffman, J., Knabner, P., Krautle, S., De Dieuleveult, C., Erhel, J., Van Der Lee, J., Lagneau, V., Mayer, K.U., Macquarrie, K.T.B.: Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case. Computat. Geosci. 14, 483–502 (2010)

    Article  Google Scholar 

  15. Marinoni, M., Carrayrou, J., Lucas, Y., Ackerer, P.: Thermodynamic equilibrium solutions through a modified Newton Rphson method, AIChe Journal (2016)

  16. Machat H., Carrayrou, J.: Comparisons of linear solvers for equilibrium geochemistry computatios. Comput. Geosci. 21, 131–150 (2017). https://doi.org/10.1007/s10596-016-9600-5

    Article  Google Scholar 

  17. Eddy, R.P.: Extrapolating to the limit of a vector sequence. In: Wang, P.C.C. (ed.) Information Linkage between Applied Mathematics and Industry, pp 387–396. Academic Press, New York (1979)

  18. Eyert, V.: A comparative study on methods for convergence acceleration of iterative vector sequences. J. Comput. Phys. 124(2), 271–285 (1996)

    Article  Google Scholar 

  19. DuMuX: DUNE for Multi-Phase, Component, Scale, Physics,..., flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011)

    Article  Google Scholar 

  20. Duminil, S., Sadok, H., Silvester, D: Fast solvers of discretized Navier-Stokes problems using vector extrapolation. Numer. Algorithms 66(1), 89–104 (2014)

    Article  Google Scholar 

  21. DUNE: Distributed and Unified Numerics Environment, http://www.dune.project.org (2016)

  22. Fang, H., Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra Appl. 16(3), 197–221 (2009)

    Article  Google Scholar 

  23. Hoffmann, J., Kräutle, S., Knaber, P.: A parallel, global-implicit@D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMas benchmark problem. Comput. Geosci. 14, 421–433 (2010)

    Article  Google Scholar 

  24. Jbilou, K.: A general projection algorithm for solving linear systems of equations. Numer. Algorithms 4, 361–377 (1993)

    Article  Google Scholar 

  25. Jbilou, K., Sadok, H.: Vector extrapolation methods. Application and numerical comparison, vol. 122 (2000)

  26. Krebs, R., Sardin, M., Schweich, D.: Mineral dissolution, precipitation and ion exchange in surfactant flooding. AIChE J. 33, 1371 (1987)

    Article  Google Scholar 

  27. Lagneau, V., Van Der Lee, J.: HYTEC results of the MoMas reactive transport benchmark. Comput. Geosci. 14(3) (2020)

  28. Machat, H., Carrayrou, J.: Comparison of linear solvers for equilibrium geochemistry computations. Comput. Geosci. 21(1), 131–150 (2017)

    Article  Google Scholar 

  29. Mayer, K.U., MacQuarrie, K.T.B.: Solution of the MoMaS reactive transport benchmark with MIN3p-model formulation and simulation results. Comput. Geosci. 14, 405–419 (2010)

    Article  Google Scholar 

  30. MeSina, M.: Convergence acceleration for the iterative solution of the equations X = AX + f. Comput. Methocis Appl. Mech. Engrg. 10(2), 165–173 (1977)

    Article  Google Scholar 

  31. Morin, K.A.: Simplified explanations and examples of computerized methods for calculating chemical equilibrium in water. Comput. Geosci. 11, 409 (1985)

    Article  Google Scholar 

  32. Nelder, J.A., Mead, R.: A Simplex method for function Minimization. Comput. J. 7, 308 (1965)

    Article  Google Scholar 

  33. Parkhurst, D.L., Appelo, C.A.J.: User’s Guide to PHREEQC (Version 2)-A computer program for speciation, Batch-Reaction, One-dimensional transport, and inverse geochemical calculations. Water-Resour. Invest. Rep. 99-4259, U.S. Geological Survey, Denver, CO (1999)

  34. Potra, F.A., Engler, H.: A characterization of the behavior of the Anderson acceleration on linear problems. Linear Algebra Appl. 438(3), 1002–1011 (2013)

    Article  Google Scholar 

  35. Rohwedder, T., Schneider, R.: An analysis for the DIIS acceleration method used in quantum chemistry calculations. J. Math. Chem. 49(9), 1889–1914 (2011)

    Article  Google Scholar 

  36. Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986)

    Article  Google Scholar 

  37. Saaltink, M.W., Carrera, J., Ayora, C.: Comparison of two approaches for reactive transport modeling. J. Geochem Explor. 69, 97–101 (2000)

    Article  Google Scholar 

  38. Shapiro, N.Z., Shapley, L.S.: Mass action laws and the gibbs free energy function. J. SOC. Indust. Appl. Math. 13(2), 353–375 (1965)

    Article  Google Scholar 

  39. Sidi, A.: Convergence and stability properties of minimal polynomial and reduced rank extrapolation algorithms. SIAM J. Numer. Anal. 23(1), 197–209 (1986)

    Article  Google Scholar 

  40. Sidi, A.: Extrapolation vs. projection methods for linear systems of equations. J. Comput. Appl. Math. 22, 71–88 (1988)

    Article  Google Scholar 

  41. Sidi, A.: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J. Comput. Appl.Math. 36, 305–337 (1991). (cf. p. 32–34)

    Article  Google Scholar 

  42. Sidi, A.: Vector Extrapolation methods with applications to solution of large systems of equations and to PageRank computations. Computer science department, Technion - Israel institute of technology, Haifa 32000, Israel. Comput. Math. Appl. 56, 1–24 (2008)

    Article  Google Scholar 

  43. Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Simunek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. 19(3), 445–478 (2015)

    Article  Google Scholar 

  44. Toth, A., Kelley, C.T.: Convergence analysis for Anderson acceleration. SIAM J. Numer.Anal. 53, 805–819 (2015). https://doi.org/10.1137/130919398

    Article  Google Scholar 

  45. Van Der Lee, J.: Thermodynamic and Mathematical Concepts of CHESS. Technical Report LHM/RD/98/39, CIG- Ecole Des L’vlines De Paris. Fontainebleau, France (1998)

  46. Walker, H.F.: Anderson acceleration: Algorithms and implementations. Research report, MS-6-15-50 worcester polytechnic institute mathematical sciences department (2011)

  47. Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715–1735 (2011)

    Article  Google Scholar 

  48. Wigley, T.M.L.: WATSPEC: A computer program for determining the equilibrium speciation of aqueous solutions. Brit. Geo-morphol. Res. Group Tech. Bull. 20 (1977)

  49. Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resources Res. 25, 93–108 (1989)

    Article  Google Scholar 

  50. Yeh, G.T., Tripathi, V.S., Gwo, J.P., Cheng, H.P., Cheng, J.R.C., Salvage, K.M., Li, M.H., Fang, Y., Li, Y., Sun, J.T., Zhang, F., Siegel, M.D.: Hydrogeochem: A coupled model of variably saturated flow, thermal transport, and reactive biogeochemical transport. Groundwater Reactive transport models 3–41 (2012)

  51. Zhang, T., Li, Y., Sun, S.: Phase equilibrium calculations in shale gas reservoirs. Capillarity 2(1), 8–16 (2019). https://doi.org/10.26804/capi.2019.01.02

    Article  Google Scholar 

  52. Zhang, T., Li, Y., Li Y., Sun, S., Hua B.: A self-adaptive deep learning algorithm for accelerating multi-component flash calculation, Computer Methods in Applied Mechanics and Engineering (If 5.763 ) 369, https://doi.org/10.1016/j.cma.2020.113207 (2020)

  53. Zhang, T., Li, Y., Sun, S., Gao X.: Accelerating flash calculations in unconventional reservoirs considering capillary pressure using an optimized deep learning algorithm, Journal of Petroleum Science and Engineering, Vol 195 (2020)

Download references

Acknowledgements

We thank referees as well as Jérôme Carrayrou for their helpful comments and interesting suggestions which allowed to improve the actual version of the article. This work is supported by the project NEEDS-NewSolChem of CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Rosier.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazer, S.A., Jazar, M. & Rosier, C. Convergence acceleration of iterative sequences for equilibrium chemistry computations. Comput Geosci 25, 1509–1538 (2021). https://doi.org/10.1007/s10596-021-10054-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10054-1

Keywords

Navigation