Skip to main content

Advertisement

Log in

Biogeochemical cycling of nickel and nutrients in a natural high-density stand of the hyperaccumulator Phyllanthus rufuschaneyi in Sabah, Malaysia

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

The extend of biogeochemical cycling of nickel (Ni) by tropical hyperaccumulator plants in their native habitat is largely unknown, although these unusual plants are suspected to play a major role in the recycling of this element in ultramafic ecosystems. In this study, we have assessed the biogeochemical cycling of Ni (and other elements, including mineral nutrients) by a tropical Ni hyperaccumulator plant, i.e., Phyllanthus rufuschaneyi, which is one of the most promising species for tropical Ni agromining. The study site was a young secondary forest in Sabah (Malaysia) where Phyllanthus rufuschaneyi occurs as the dominant species on an ultramafic Cambisol. For 2 years, we monitored a 100-m2 plot and collected information on weather, biomass increase, soil fertility, water fluxes to the soil and litter fluxes for a wide range of elements, including Ni. The Ni cycle is mainly driven by internal fluxes, notably the degradation and recycling of Ni-rich litter. Over the period of investigation, the Ni litter flux corresponded to the total Ni stock of the litter (5.2 g m−2 year−1). The results further show that Ni turnover varies significantly with the accumulation properties of the plant cover. This points to the major influence of Ni hyperaccumulator plants in building up Ni available stocks in the topsoils, as has also been shown in temperate ultramafic systems. Litterfall and throughfall contribute substantially to the cycling of phosphorus, sulphur and potassium in this ecosystem, with throughfall contributing 2-, 220- and 20-fold higher to the respective nutrient fluxes relative to litterfall. The magnesium:calcium ratio far exceeded 1 in the soil, but was < 1 in the leaves of Phyllanthus rufuschaneyi. The insights from this study should be taken into account when designing tropical agromining operations; as Ni stocks could be more labile than initially thought. The removal of Ni- and nutrients-rich biomass will likely affect available Ni (and major nutrients) for the next cropping seasons, and requires sustainable fertilisation, to be utilized to replenish depleted major nutrients. These findings also have major ecological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alves S, Ascensão M, De LM et al (2011) A nickel availability study in serpentinised areas of Portugal. Geoderma 164:155–163. https://doi.org/10.1016/j.geoderma.2011.05.019

    Article  CAS  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582. https://doi.org/10.1111/j.1469-8137.1993.tb03847.x

    Article  CAS  PubMed  Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293(1–2):79–89

    Article  CAS  Google Scholar 

  • Bani A, Echevarria G, Montargès-Pelletier E, Gjoka F, Sulçe S, Morel JL (2014) Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environ Monit Assess 186:4431–4442

    Article  CAS  Google Scholar 

  • Bouman R, van Welzen P, Sumail S et al (2018) Phyllanthus rufuschaneyi: a new nickel hyperaccumulator from Sabah (Borneo Island) with potential for tropical agromining. Bot Stud. https://doi.org/10.1186/s40529-018-0225-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyd RS, Jaffré T (2001) Phytoenrichment of soil Ni content by Sebertia acuminatain New Caledonia and the concept of elemental allelopathy. S Afr J Sci 97:275–538

    Google Scholar 

  • Boyd R, Martens S (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7. https://doi.org/10.1007/s000490050002

    Article  CAS  Google Scholar 

  • Brooks RR (1987) Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland

    Google Scholar 

  • Centofanti T, Siebecker MG, Chaney RL et al (2012) Hyperaccumulation of nickel by Alyssum corsicum is related to solubility of Ni mineral species. Plant Soil 359:71–83. https://doi.org/10.1007/s11104-012-1176-9

    Article  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL et al (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429. https://doi.org/10.2134/jeq2006.0514

    Article  CAS  PubMed  Google Scholar 

  • Chardot V, Echevarria G, Gury M, Massoura S, Morel J (2007) Nickel bioavailability in an ultramafic toposequence in the Vosges Mountains (France). Plant Soil 293:7–21

    Article  CAS  Google Scholar 

  • Deng THB, Coquet C, Tang YT, Sterckeman T et al (2014) Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Environ Sci Technol 48:11926–11933

    Article  CAS  Google Scholar 

  • Echevarria G (2018) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants, mineral resource reviews series. Springer, Cham, pp 135–156

    Chapter  Google Scholar 

  • Echevarria G, Massoura ST, Sterckeman T et al (2006) Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem 25:643–651. https://doi.org/10.1897/05-051R.1

    Article  CAS  PubMed  Google Scholar 

  • Estrade N, Cloquet C, Echevarria G et al (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423:24–35. https://doi.org/10.1016/j.epsl.2015.04.018

    Article  CAS  Google Scholar 

  • Foster NW, Bhatti JS (2006) Forest ecosystems: nutrient cycling. Encycl Soil Sci. https://doi.org/10.1081/E-ESS-120001709

    Article  Google Scholar 

  • Galey MC, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of South and Southeast Asia. Bot Stud 58:18

    Article  CAS  Google Scholar 

  • Golley F, Hopkins B, Bernard-Reversat F (1978) Decomposition and biogeochemical cycles. In: Tropical forest ecosystems. A state of knowledge report (UNESCO). UNESCO/UNEP/FAO, pp 271–285

  • Jaffré T, Schmid M (1974) Accumulation du nickel par une Rubiacée de Nouvelle-Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. Comptes Rendus De L’académie Des Sciences Série D: Sciences Naturelles 278:1727–1730

    Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4:279

    Article  Google Scholar 

  • Massoura ST, Echevarria G, Leclerc-Cessac E, Morel JL (2004) Response of excluder, indicator, and hyperaccumulator plants to nickel availability in soils. Aust J Soil Res 42:933–938. https://doi.org/10.1071/SR03157

    Article  CAS  Google Scholar 

  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel J-L, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406:55–69

    Article  CAS  Google Scholar 

  • Nkrumah P, Echevarria G, Erskine P, van der Ent A (2018a) Phytomining: using plants to extract valuable metals from mineralised wastes and uneconomic resources. In: Clifford MJ, Perrons RK, Ali SH, Grice TA (eds) Extracting innovations: mining, energy, and technological change in the digital age. CRC Press, Boca Raton, pp 313–324

    Chapter  Google Scholar 

  • Nkrumah P, Chaney RL, Morel JL (2018b) Agronomy of ‘metal crops’ used in agromining. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: extracting unconventional resources from plants. Mineral resource reviews series. Springer, Cham, pp 19–38

    Chapter  Google Scholar 

  • Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019a) The first tropical ‘Metal Farm’: some perspectives from field and pot experiments. J Geochem Explor 198:114–122

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019b) Growth effects in tropical nickel-agromining ‘metal crops’ in response to nutrient dosing. J Plant Nutr Soil Sci 182:715–728

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019c) Soil amendments affecting nickel uptake and growth performance of tropical ‘metal crops’ used for agromining. J Geochem Explor 203:78–86

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2019d) Effect of nickel concentration and soil pH on metal accumulation and growth in tropical agromining ‘metal crops.’ Plant Soil 443:27–39

    Article  CAS  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2021a) Contrasting phosphorus (P) accumulation in response to soil P availability in ‘metal crops’ from P-impoverished soils. Plant Soil. https://doi.org/10.1007/s11104-021-05075-9

    Article  Google Scholar 

  • Nkrumah PN, Echevarria G, Erskine PD, Chaney RL, Sumail S, van der Ent A (2021b) Variation in the ionome of tropical ‘metal crops’ in response to soil potassium availability. Plant Soil 465:185–195. https://doi.org/10.1007/s11104-021-04995-w

    Article  CAS  Google Scholar 

  • Paul ALD, Isnard S, Wawryk CM, Erskine PD, Echevarria G, Baker AJM, Kirby JK, van der Ent A (2021) Intensive cycling of nickel in a New Caledonian forest dominated by hyperaccumulator trees. Plant J. https://doi.org/10.1111/tpj.15362

    Article  PubMed  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217–218:8–17. https://doi.org/10.1016/j.plantsci.2013.11.011

    Article  CAS  PubMed  Google Scholar 

  • Proctor J (1970) Magnesium as toxic element. Nature 227:742–743

    Article  CAS  Google Scholar 

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6:105–124. https://doi.org/10.1078/1433-8319-00045

    Article  Google Scholar 

  • Quantin C, Ettler V, Garnier J, Šebek O (2008) Sources and extractibility of chromium and nickel in soil profiles developed on Czech serpentinites. Comptes Rendus Geosci 340:872–882. https://doi.org/10.1016/j.crte.2008.07.013

    Article  CAS  Google Scholar 

  • Raous S, Becquer T, Garnier J et al (2010) Mobility of metals in nickel mine spoil materials. Appl Geochem 25:1746–1755. https://doi.org/10.1016/j.apgeochem.2010.09.001

    Article  CAS  Google Scholar 

  • Raous S, Echevarria G, Sterckeman T et al (2013) Potentially toxic metals in ultramafic mining materials: identification of the main bearing and reactive phases. Geoderma 192:111–119. https://doi.org/10.1016/j.geoderma.2012.08.017

    Article  CAS  Google Scholar 

  • Ratié G, Quantin C, Maia De Freitas A, Echevarria G, Ponzevera E, Garnier J (2019) The behavior of nickel isotopes at the biogeochemical interface between ultramafic soils and Ni accumulator species. J Geochem Explor 196:182–191

    Article  Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T et al (2017) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol. https://doi.org/10.1111/nph.14907

    Article  PubMed  Google Scholar 

  • Tisserand R, van der Ent A, Nkrumah PN, Sumail S, Echevarria G (2021) Improving tropical nickel agromining crop systems: the effects of chemical and organic fertilisation on nickel yield. Plant Soil 465:83–95. https://doi.org/10.1007/s11104-020-04785-w

    Article  CAS  Google Scholar 

  • van der Ent A, Mulligan D (2015) Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41(4):396–408

    Article  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD et al (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334. https://doi.org/10.1007/s11104-012-1287-3

    Article  CAS  Google Scholar 

  • van der Ent A, Erskine PD, Sumail S (2015a) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25(5):243–259

    Article  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD et al (2015b) Agromining: farming for metals in the future? Environ Sci Technol 49:4773–4780

    Article  Google Scholar 

  • van der Ent A, Echevarria G, Tibbett M (2016) Delimiting soil chemistry thresholds for nickel hyperaccumulator plants in Sabah (Malaysia). Chemoecology 26:67–82. https://doi.org/10.1007/s00049-016-0209-x

    Article  CAS  Google Scholar 

  • van der Ent A, Callahan DL, Noller BN et al (2017) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861. https://doi.org/10.1038/srep41861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Cardace D, Tibbett M, Echevarria G (2018) Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). CATENA 160:154–169

    Article  Google Scholar 

  • Vaughan J, Reggio J, Chen J, Peng H, Harris HH, van der Ent A (2017) Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. Hydrometallurgy 169:346–355

    Article  CAS  Google Scholar 

  • Vitousek PM (1982) The University of Chicago nutrient cycling and nutrient use efficiency. Am Soc Nat 119:553–572

    Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecol Soc Am Stable Ecol 65:285–298

    CAS  Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167. https://doi.org/10.1146/annurev.es.17.110186.001033

    Article  Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ (1986) Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Adv Ecol Res 15:303–377. https://doi.org/10.1016/S0065-2504(08)60122-1

    Article  Google Scholar 

  • Zelano IO, Cloquet C, Fraysse F et al (2018) The influence of organic complexation on Ni isotopic fractionation and Ni recycling in the upper soil layers. Chem Geol 483:47–55. https://doi.org/10.1016/j.chemgeo.2018.02.023

    Article  CAS  Google Scholar 

  • Zelano IO, Cloquet C, van der Ent A, Echevarria G, Gley R, Landrot G, Pollastri S, Fraysse F, Montargès-Pelletier E (2020) Coupling nickel chemical speciation and isotope ratios to decipher nickel dynamics in the Rinorea cf. bengalensis-soil system in Malaysian Borneo. Plant Soil 454:225–243

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Sabah Parks for their support and thank the Sabah Biodiversity Centre for granting permission for conducting research in Sabah (license JKM/MBS.1000-2/2 JLD.8). Serge Didier from UR BEF (INRAE) has provided substantial expertise to set up the instrumentation at the experimental site. The French National Research Agency through the national “Investissements d’avenir” program (ANR-10-LABX-21, LABEX RESSOURCES21 and Lorraine Université d’Excellence-LUE-Grant for traveling to Malaysia in 2019–2020) is acknowledged for funding support to R. Tisserand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Echevarria.

Additional information

Communicated by Marko Rohlfs.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tisserand, R., Nkrumah, P.N., van der Ent, A. et al. Biogeochemical cycling of nickel and nutrients in a natural high-density stand of the hyperaccumulator Phyllanthus rufuschaneyi in Sabah, Malaysia. Chemoecology 32, 15–29 (2022). https://doi.org/10.1007/s00049-021-00363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-021-00363-3

Keywords

Navigation