Skip to main content

Advertisement

Log in

Association between new markers of cardiovascular risk and hepatic insulin resistance in those at high risk of developing type 2 diabetes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Aim/hypothesis

Hepatic insulin resistance (HIR) is considered to be an independent predictor of metabolic disorders and plays an important role in systemic inflammation, which contributes to abnormalities in cardiovascular disease (CVD) risk factors. The aim of this study was to investigate the relationship between HIR and new markers of cardiovascular risks, including leptin/adiponectin ratio (L/A), lipoprotein(a) [Lp(a)], and tumor necrosis factor alpha (TNF-α), at comparable whole body insulin sensitivity in non-diabetic individuals with or without CVD and at high risk of developing type 2 diabetes.

Methods

The HIR index, L/A, Lp(a), and TNF-α were measured in 50 participants with CVD and in 200 without CVD (1:4 ratio). These were also matched for the homeostatic model assessment for insulin resistance (HOMA-IR) and Matsuda-insulin sensitivity index (ISI) in an observational study design.

Results

The HIR index (1.52 ± 0.14 vs. 1.45 ± 0.17, p < 0.02), L/A (3.22 ± 3.10 vs. 2.09 ± 2.27, p < 0.004), and levels of Lp(a) (66.6 ± 49.5 vs. 37.9 ± 3 6.8 mg/dL, p < 0.0001) and TNF-α (18.9 ± 21.8 vs. 5.4 ± 7.1 pg/mL, p < 0.0001) were higher in those with CVD than those without CVD. HOMA-IR and ISI were not significantly different (p = 0.88 and p = 0.35, respectively). The HIR index was directly correlated with L/A (r = 0.41, p < 0.0001), Lp(a) (r = 0.20, p < 0.002), TNF- α (r = 0.14, p < 0.03), and diastolic blood pressure (DBP) (r = 0.13, p < 0.03). The stepwise model analysis showed that L/A, Lp(a), and TNF-α explained about 20% of the variation in the HIR indices of all the participants (p < 0.02).

Conclusions/Interpretations

Our results suggest a positive association between HIR and new markers of cardiovascular risk [L/A, Lp(a), and TNF- α] at comparable whole body insulin sensitivity in those with or without CVD and at high risk of developing type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AUC:

area under the curve

BMI:

body mass index

CVD:

cardiovascular disease

FFM:

free fat mass

FM:

fat mass

HDL:

high density lipoprotein

HIR:

hepatic insulin resistance

HIR index:

hepatic insulin resistance index

HOMA-IR:

homeostasis model assessment of insulin resistance

IR:

insulin resistance

L/A:

leptin/adiponectin ratio

LDL:

low density lipoprotein

Matsuda-ISI::

Matsuda insulin sensitivity index

MS:

metabolic syndrome

OGTT:

oral glucose tolerance test

TNF-α:

tumor necrosis factor alpha

References

  1. G. Reaven, Insulin resistance and coronary heart disease in nondiabetic individuals. Arterioscler Thromb. Vasc. Biol. 32, 1754–9 (2012). https://doi.org/10.1161/ATVBAHA.111.241885

    Article  CAS  PubMed  Google Scholar 

  2. K.B. Gast, N. Tjeerdema, T. Stijnen, J.W. Smit, O.M. Dekkers, Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS ONE 7, e52036 (2012). https://doi.org/10.1371/journal.pone.0052036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. Stumvoll, S. Jacob, H.G. Wahl, B. Hauer, K. Loblein, P. Grauer, R. Becker, M. Nielsen, W. Renn, H. haring, Suppression of systemic, intramuscular, and subcutaneous adipose tissue lipolysis by insulin in human. J. Clin. Endocrinol. Metab. 85, 3740–3745 (2000)

    CAS  PubMed  Google Scholar 

  4. S. Zhao, C.M. Kusminski, P.E. Scherer, Adiponectin, leptin and cardiovascular disorders. Circ. Res 128, 136–149 (2021). https://doi.org/10.1161/CIRCRESAHA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. Zaletel, D.P. Barlovic, J. Prezelj, Adiponectin-leptin ratio: a useful estimate of insulin resistance in patients with Type 2 diabetes. J. Endocrinol. Invest 33, 514–8 (2010). https://doi.org/10.1007/BF03346639

    Article  CAS  PubMed  Google Scholar 

  6. M. Inoue, M. Yano, M. Yamakado, Relationship between the adiponectin-leptin ratio and parameters of insulin resistance in subjects without hyperglycemia. Metabolism 55, 1248–54 (2006). https://doi.org/10.1016/j.metabol.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  7. P. Finneran, A. Pampana, S.A. Khetarpal, M. Trinder, A.P. Patel, K. Paruchuri, K. Aragam, G.M. Peloso, P. Natarajan, Lipoprotein (a) and coronary artery disease risk without a family history of heart disease. J. Am. Heart Assoc. 10, e017470 (2021). https://doi.org/10.1161/JAHA.120.017470

    Article  PubMed  PubMed Central  Google Scholar 

  8. B.G. Nordestgaard, M.J. Chapman, K. Ray, J. Borén, F. Andreotti, G.F. Watts et al. European Atherosclerosis Society Consensus Panel. Lipoprotein (a) as a cardiovascular risk factor: current status. Eur. Heart J. 31, 2844–53 (2010). https://doi.org/10.1093/eurheartj/ehq386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Emerging Risk Factors Collaboration, S. Erqou, S. Kaptoge, P.L. Perry, E. Di Angelantonio, A. Thompson, I.R. White et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA 302, 412–23 (2009). https://doi.org/10.1001/jama.2009.1063

    Article  Google Scholar 

  10. R. Clarke, J.F. Peden, J.C. Hopewell, T. Kyriakou, A. Goel, S.C. Heath et al. PROCARDIS Consortium. Genetic variants associated with Lp (a) lipoprotein level and coronary disease. N. Engl. J. Med. 361, 2518–28 (2009). https://doi.org/10.1056/NEJMoa0902604

    Article  CAS  PubMed  Google Scholar 

  11. J.L. Jin, Y.X. Cao, H.W. Zhang, D. Sun, Q. Hua, Y.F. Li et al. Lipoprotein(a) and Cardiovascular Outcomes in Coronary Artery Disease in patients with prediabetes and diabetes. Diabetes Care 42, 1312–8 (2019). https://doi.org/10.2337/dc19-0274

    Article  CAS  PubMed  Google Scholar 

  12. R. Huang, S.-R. Zhao, Y. Li, F. Liu, Y. Gong, J. Xing, Z.-S. Xu, Association of tumor necrosis factor-α gene polymorphisms and coronary artery disease susceptibility: a systematic review and meta-analysis. BMC Med. Genet. 21, 29 (2020). https://doi.org/10.1186/s12881-020-0952-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D. Gupta, S. Varma, R.L. Khandelwal, Long-term effects of tumor necrosis factor-alpha treatment on insulin signaling pathway in HepG2 cells and HepG2 cells overexpressing constitutively active Akt/PKB. J. Cell Biochem 100, 593–607 (2007). https://doi.org/10.1002/jcb.21080

    Article  CAS  PubMed  Google Scholar 

  14. H. Zhao, X. Huang, J. Jiao, H. Zhang, J. Liu, W. Qin et al. Protein phosphatase 4 (PP4) functions as a critical regulator in tumor necrosis factor (TNF)-α-induced hepatic insulin resistance. Sci. Rep. 5, 18093 (2015). https://doi.org/10.1038/srep18093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M.S.H. Akash, K. Rehman, A. Liaqat, Tumor necrosis factor-alpha: role in development of insulin resistance and pathogenesis of type 2 diabetes mellitus. J. Cell Biochem 119, 105–10 (2017). https://doi.org/10.1002/jcb.26174

    Article  CAS  PubMed  Google Scholar 

  16. K.G. Alberti, P. Zimmet, J. Shaw; IDF epidemiology task force consensus group, The metabolic syndrome–a new worldwide definition. Lancet 366, 1059–62 (2005). https://doi.org/10.1016/S0140-6736(05)67402-8

    Article  PubMed  Google Scholar 

  17. T.D. Topolski, J. LoGerfo, D.L. Patrick, B. Williams, J. Walwick, M.B. Patrick, The rapid assessment of physical activity (RAPA) among older adults. Prev. Chronic Dis. 3, 1–8 (2006)

    Google Scholar 

  18. J. Vangipurapu, A. Stančáková, T. Kuulasmaa, J. Paananen, J. Kuusisto, E. Ferrannini et al. A novel surrogate index for hepatic insulin resistance. Diabetologia 54, 540–3 (2011). https://doi.org/10.1007/s00125-010-1966-7. & the EGIR-RISC Study Group

    Article  CAS  PubMed  Google Scholar 

  19. R.A. DeFronzo, J.D. Tobin, R. Andres, Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am. J. Physiol. 237, E214–E23 (1979). https://doi.org/10.1152/ajpendo.1979.237.3.E214

    Article  CAS  PubMed  Google Scholar 

  20. J. Vangipurapu, A. Stančáková, T. Kuulasmaa, P. Soininen, A.J. Kangas, M. Ala-Korpela, J. Kuusisto, M. Laakso, Association between liver insulin resistance and cardiovascular risk factors. J. Intern Med. 272, 402–408 (2012). https://doi.org/10.1111/j.1365-2796.2012.02540.x

    Article  CAS  PubMed  Google Scholar 

  21. D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–9 (1985). https://doi.org/10.1007/BF00280883

    Article  CAS  Google Scholar 

  22. M. Matsuda, R.A. DeFronzo, Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22, 1462–70 (1999). https://doi.org/10.2337/diacare.22.9.1462

    Article  CAS  PubMed  Google Scholar 

  23. L.D. Monti, E. Setola, P.C. Lucotti, M.M. Marrocco-Trischitta, M. Comola, E. Galluccio, A. Poggi, S. Mammì, A.L. Catapano, G. Comi, R. Chiesa, E. Bosi, P.M. Piatti, Effect of a long-term oral l-arginine supplementation on glucose metabolism: a randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 14, 893–900 (2012). https://doi.org/10.1111/j.1463-1326.2012.01615.x

    Article  CAS  PubMed  Google Scholar 

  24. E. Galluccio, P. Piatti, L. Citterio, P.C. Lucotti, E. Setola, L. Cassina et al. Hyperinsulinemia and impaired leptin-adiponectin ratio associate with endothelial nitric oxide synthase polymorphisms in subjects with in-stent restenosis. Am. J. Physiol. Endocrinol. Metab. 294, E978–E86 (2008). https://doi.org/10.1152/ajpendo.00003.2008

    Article  CAS  PubMed  Google Scholar 

  25. P. Piatti, C. Di Mario, L.D. Monti, G. Fragasso, F. Sgura, A. Caumo et al. Association of insulin resistance, hyperleptinemia, and impaired nitric oxide release with in-stent restenosis in patients undergoing coronary stenting. Circulation 108, 2074–81 (2003). https://doi.org/10.1161/01.CIR.0000095272.67948.17

    Article  CAS  PubMed  Google Scholar 

  26. M. Matsuda, I. Shimomura, Roles of adiponectin and oxidative stress in obesity-associated metabolic and cardiovascular diseases. Rev. Endocr. Metab. Disord. 15, 1–10 (2014). https://doi.org/10.1007/s11154-013-9271-7

    Article  CAS  PubMed  Google Scholar 

  27. Y. Li, L. Ding, W. Hassan, D. Abdelkader, J. Shang, Adipokines and hepatic insulin resistance. J. Diabetes Res 2013, 170532 (2013). https://doi.org/10.1155/2013/170532

    Article  PubMed  PubMed Central  Google Scholar 

  28. A. Baranova, S.I. Gowder, K. Schlauch, H. Elariny, R. Collantes, A. Afendy, J.P. Ong, Z. Goodman, V. Chandhoke, Z.M. Younossi, Gene expression of leptin, resistin, and adiponectin in the white adipose tissue of obese patients with non-alcoholic fatty liver disease and insulin resistance. Obes. Surg. 16, 1118–1125 (2006). https://doi.org/10.1381/096089206778392149

    Article  PubMed  Google Scholar 

  29. N. Vrachnis, P. Belitsos, S. Sifakis, K. Dafopoulos, C. Siristatidis, K.I. Pappa, Z. Iliodromiti, Role of adipokines and other inflammatory mediators in gestational diabetes mellitus and previous gestational diabetes mellitus. Int J. Endocrinol. 2012, 549748 (2012). https://doi.org/10.1155/2012/549748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. Gastaldelli, S.A. Harrison, R. Belfort-Aguilar, L.J. Hardies, B. Balas, S. Schenker, K. Cusi, Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 50, 1087–93 (2009). https://doi.org/10.1002/hep.23116

    Article  CAS  PubMed  Google Scholar 

  31. H. Oku, F. Matsuura, M. Koseki, J.C. Sandoval, M. Yuasa-Kawase, K. Tsubakio-Yamamoto, D. Masuda, N. Maeda, T. Ohama, M. Ishigami, M. Nishida, K. Hirano, S. Kihara, M. Hori, I. Shimomura, S. Yamashita, Adiponectin deficiency suppresses ABCA1 expression and ApoA-I synthesis in the liver. Febs. Lett. 581, 5029–5033 (2007). https://doi.org/10.1016/j.bbrc.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  32. F. Matsuura, H. Oku, M. Koseki, J.C. Sandoval, M. Yuasa-Kawase, K. Tsubakio-Yamamoto, D. Masuda, N. Maeda, K. Tsujii, M. Ishigami, M. Nishida, K. Hirano, S. Kihara, M. Hori, I. Shimomura, S. Yamashita, Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. Biochem. Biophys. Res. Commun. 358, 1091–1095 (2007). https://doi.org/10.1016/j.bbrc.2007.05.040

    Article  CAS  PubMed  Google Scholar 

  33. D.L. Rainwater, S.M. Haffner, Insulin and 2-hour glucose levels are inversely related to Lp (a) concentrations controlled for LPA genotype. Arterioscler Thromb. Vasc. Biol. 18, 1335–1341 (1998). https://doi.org/10.1161/01.atv.18.8.1335

    Article  CAS  PubMed  Google Scholar 

  34. S.M. Haffner, P. Karhapaa, D.L. Rainwater, L. Mykkanen, G. Aldrete Jr, M. Laakso, Insulin sensitivity and Lp (a) concentrations in normoglycemic men. Diabetes Care 18, 193–189 (1995). https://doi.org/10.2337/diacare.18.2.193

    Article  CAS  PubMed  Google Scholar 

  35. H. Vaverková, D. Karásek, M. Halenka, L. Cibíčková, V. Kubíčková, Inverse association of lipoprotein (a) with markers of insulin resistance in dyslipidemic subjects. Physiol. Res 66, S113–S120 (2017). https://doi.org/10.33549/physiolres.933583.

    Article  PubMed  Google Scholar 

  36. G. Ferretti, T. Bacchetti, T.P. Johnston, M. Banach, M. Pirro, A. Sahebkar, Lipoprotein(a): a missing culprit in the management of athero-thrombosis? J. Cell Physiol. 233(4), 2966–81 (2018). https://doi.org/10.1002/jcp.26050

    Article  CAS  PubMed  Google Scholar 

  37. J.P. Fisher, C.N. Young, P.J. Fadel, Central sympathetic overactivity: maladies and mechanisms. Auton. Neurosci. 148(1-2), 5–15 (2009). https://doi.org/10.1016/j.autneu.2009.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lautt WW. Hepatic Circulation: Physiology and Pathophysiology. San Rafael (CA): Morgan & Claypool Life Sciences. 2009. Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease. https://doi.org/10.4199/C00004ED1V01Y200910ISP001

  39. R.A. Rizza, E. Cryer, Haymond, J.E. Gerich, Adrenergic mechanisms for effects of epinephrine on glucose production and clearance in man. J. Clin. Invest 65, 682–689 (1980). https://doi.org/10.1172/JCI109714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. T.K.T. Lam, H. Yoshii, C.A. Haber, E. Bogdanovic, L. Lam, I.G. Fantus, A. Giacca, Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am. J. Physiol. 283, E682–E691 (2002). https://doi.org/10.1152/ajpendo.00038.2002

    Article  CAS  Google Scholar 

  41. L. Li, G.-Y. Yang, Effect of hepatic glucose production on acute insulin resistance induced by lipid-infusion in awake rats. World J. Gastroenterol. 10, 3208–3211 (2004). https://doi.org/10.3748/wjg.v10.i21.3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. E.W. Kraegen, G.J. Cooney, J. Ye, A.L. Thompson, Triglycerides, fatty acids and insulin resistance—hyperinsulinemia. Exp. Clin. Endocrinol. Diabetes 109, S516–26 (2001). https://doi.org/10.1055/s-2001-15114

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

PMP and LDM designed the study. PMP, LDM, and AM conducted clinical determinations, BF, EG, and SS acquired data, PMP, LDM and CBC performed statistical analysis. PMP, LDM, and CBC wrote the manuscript. PMP, LDM, and EB contributed to the manuscript revision

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucilla D. Monti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monti, L.D., Genzano, C.B., Fontana, B. et al. Association between new markers of cardiovascular risk and hepatic insulin resistance in those at high risk of developing type 2 diabetes. Endocrine 75, 409–417 (2022). https://doi.org/10.1007/s12020-021-02868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02868-x

Keywords

Navigation