Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Role of Epigenetics in the Pathogenesis and Potential Treatment of Attention Deficit Hyperactivity Disorder

Author(s): Jacob Peedicayil*

Volume 20, Issue 9, 2022

Published on: 30 March, 2022

Page: [1642 - 1650] Pages: 9

DOI: 10.2174/1570159X19666210920091036

Price: $65

Abstract

There is increasing evidence that dysregulated epigenetic mechanisms of gene expression are involved in the pathogenesis of attention deficit hyperactivity disorder (ADHD). This review presents a comprehensive summary of the current state of research on the role of epigenetics in the pathogenesis of ADHD. The potential role of epigenetic drugs in the treatment of ADHD is also reviewed. Several studies suggest that there are epigenetic abnormalities in preclinical models of ADHD and in ADHD patients. Regarding DNA methylation, many studies have reported DNA hypermethylation. There is evidence that there is increased histone deacetylation in ADHD patients. Abnormalities in the expression of microRNAs (miRNAs) in ADHD patients have also been found. Some currently used drugs for treating ADHD, in addition to their more well-established mechanisms of action, have been shown to alter epigenetic mechanisms of gene expression. Clinical trials of epigenetic drugs in patients with ADHD report favorable results. These data suggest that abnormal epigenetic mechanisms of gene expression may be involved in the pathogenesis of ADHD. Drugs acting on epigenetic mechanisms may be a potential new class of drugs for treating ADHD.

Keywords: Attention deficit hyperactivity disorder, childhood, genetics, epigenetics, pathogenesis, treatment.

Graphical Abstract
[1]
Sadock, B.J.; Sadock, V.A.; Ruiz, P.K. Kaplan & Sadock’s Synopsis of Psychiatry, 11th ed; Wolters Kluwer: Philadelhphia, 2015.
[2]
Feldman, H.M.; Reiff, M.I. Clinical practice. Attention deficit-hyperactivity disorder in children and adolescents. N. Engl. J. Med., 2014, 370(9), 838-846.
[http://dx.doi.org/10.1056/NEJMcp1307215] [PMID: 24571756]
[3]
Volkow, N.D.; Swanson, J.M. Clinical practice: Adult attention deficit-hyperactivity disorder. N. Engl. J. Med., 2013, 369(20), 1935-1944.
[http://dx.doi.org/10.1056/NEJMcp1212625] [PMID: 24224626]
[4]
Faraone, S.V.; Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry, 2019, 24(4), 562-575.
[http://dx.doi.org/10.1038/s41380-018-0070-0] [PMID: 29892054]
[5]
Thapar, A. Discoveries on the genetics of ADHD in the 21st century: New findings and their implications. Am. J. Psychiatry, 2018, 175(10), 943-950.
[http://dx.doi.org/10.1176/appi.ajp.2018.18040383] [PMID: 30111187]
[6]
Grimm, O.; Kranz, T.M.; Reif, A. Genetics of ADHD: What should the clinician know? Curr. Psychiatry Rep., 2020, 22(4), 18.
[http://dx.doi.org/10.1007/s11920-020-1141-x] [PMID: 32108282]
[7]
Faraone, S.V.; Mick, E. Molecular genetics of attention deficit hyperactivity disorder. Psychiatr. Clin. North Am., 2010, 33(1), 159-180.
[http://dx.doi.org/10.1016/j.psc.2009.12.004] [PMID: 20159345]
[8]
Perroud, N.; Weibel, S.; Aubry, J-M.; Dayer, A. Epigenetics of Attention-Deficit Hyperactivity Disorder. In: Neuropsychiatric Disorders and Epigenetics; Yasui, D.H.; Peedicayil, J.; Grayson, D.R., Eds.; Elsevier: San Diego, USA, 2016, pp. 129-140.
[9]
Hamza, M.; Halayem, S.; Bourgou, S.; Daoud, M.; Charfi, F.; Belhadj, A. Epigenetics and ADHD: Toward an integrative approach of the disorder pathogenesis. J. Atten. Disord., 2019, 23(7), 655-664.
[http://dx.doi.org/10.1177/1087054717696769] [PMID: 28665177]
[10]
Cortese, S. Pharmacological treatment of attention-deficit hyperactivity disorder. N. Engl. J. Med., 2020, 383(11), 1050-1056.
[http://dx.doi.org/10.1056/NEJMra1917069] [PMID: 32905677]
[11]
Feinberg, A.P.; Fallin, M.D. Epigenetics at the crossroads of genes and the environment. JAMA, 2015, 314(11), 1129-1130.
[http://dx.doi.org/10.1001/jama.2015.10414] [PMID: 26372577]
[12]
Feinberg, A.P. Epigenetics at the epicenter of modern medicine. JAMA, 2008, 299(11), 1345-1350.
[http://dx.doi.org/10.1001/jama.299.11.1345] [PMID: 18349095]
[13]
Peedicayil, J.; Grayson, D.R. An epigenetic basis for an omnigenic model of psychiatric disorders. J. Theor. Biol., 2018, 443, 52-55.
[http://dx.doi.org/10.1016/j.jtbi.2018.01.027] [PMID: 29378208]
[14]
Peedicayil, J.; Grayson, D.R. Some implications of an epigenetic-based omnigenic model of psychiatric disorders. J. Theor. Biol., 2018, 452, 81-84.
[http://dx.doi.org/10.1016/j.jtbi.2018.05.014] [PMID: 29775682]
[15]
Spaniardi, A.M.; Greenhill, L.L.; Hrchtman, L.I. Attention-Deficit Disorders. In: Comprehensive Textbook of Psychiatry, 10th ed; Wolters Kluwer: Philadelhphia, PA, 2017, pp. 3587-3598.
[16]
Wu, L.; Zhao, Q.; Zhu, X.; Peng, M.; Jia, C.; Wu, W.; Zheng, J.; Wu, X.Z. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathol., 2010, 20(6), 1042-1054.
[http://dx.doi.org/10.1111/j.1750-3639.2010.00410.x] [PMID: 20557304]
[17]
Kim, P.; Choi, C.S.; Park, J.H.; Joo, S.H.; Kim, S.Y.; Ko, H.M.; Kim, K.C.; Jeon, S.J.; Park, S.H.; Han, S.H.; Ryu, J.H.; Cheong, J.H.; Han, J.Y.; Ko, K.N.; Shin, C.Y. Chronic exposure to ethanol of male mice before mating produces attention deficit hyperactivity disorder-like phenotype along with epigenetic dysregulation of dopamine transporter expression in mouse offspring. J. Neurosci. Res., 2014, 92(5), 658-670.
[http://dx.doi.org/10.1002/jnr.23275] [PMID: 24510599]
[18]
Ookubo, M.; Sadamatsu, M.; Yoshimura, A.; Suzuki, S.; Kato, N.; Kojima, H.; Yamada, N.; Kanai, H. Aberrant monoaminergic system in thyroid hormone receptor-β deficient mice as a model of attention-deficit hyperactivity disorder. Int. J. Neuropsychopharmacol., 2015, 18(7), pyv004.
[http://dx.doi.org/10.1093/ijnp/pyv004] [PMID: 25612897]
[19]
Wu, L.H.; Cheng, W.; Yu, M.; He, B.M.; Sun, H.; Chen, Q.; Dong, Y.W.; Shao, X.T.; Cai, Q.Q.; Peng, M.; Wu, X.Z. Nr3C1-Bh1hb2 axis dysregulation is involved in the development of attention deficit hyperactivity. Mol. Neurobiol., 2017, 54(2), 1196-1212.
[http://dx.doi.org/10.1007/s12035-015-9679-z] [PMID: 26820676]
[20]
Tian, T.; Zhang, Y.; Wu, T.; Yang, L.; Chen, C.; Li, N.; Li, Y.; Xu, S.; Fu, Z.; Cui, X.; Ji, C.; Chi, X.; Tong, M.; Chen, R.; Hong, Q.; Hu, Y. miRNA profiling in the hippocampus of attention-deficit/hyperactivity disorder rats. J. Cell. Biochem., 2019, 120(3), 3621-3629.
[http://dx.doi.org/10.1002/jcb.27639] [PMID: 30270454]
[21]
Xu, Q.; Ou, J.; Zhang, Q.; Tang, R.; Wang, J.; Hong, Q.; Guo, X.; Tong, M.; Yang, L.; Chi, X. Effects of aberrant miR-384-5p expression on learning and memory in a rat model of attention deficit hyperactivity disorder. Front. Neurol., 2020, 10, 1414.
[http://dx.doi.org/10.3389/fneur.2019.01414] [PMID: 32116987]
[22]
Zhang, M.; Zhang, D.; Dai, J.; Cao, Y.; Xu, W.; He, G.; Wang, Z.; Wang, L.; Li, R.; Qiao, Z. Paternal nicotine exposure induces hyperactivity in next-generation via down-regulating the expression of DAT. Toxicology, 2020, 431, 152367.
[http://dx.doi.org/10.1016/j.tox.2020.152367] [PMID: 31945395]
[23]
Abdi, A.; Zafarpiran, M.; Farsani, Z.S. The computational analysis conducted on miRNA target sites in association with SNPs at 3’UTR of ADHD-implicated genes. Cent. Nerv. Syst. Agents Med. Chem., 2020, 20(1), 58-75.
[http://dx.doi.org/10.2174/1871524919666191014104843] [PMID: 31660846]
[24]
Peter, C.J.; Fischer, L.K.; Kundakovic, M.; Garg, P.; Jakovcevski, M.; Dincer, A.; Amaral, A.C.; Ginns, E.I.; Galdzicka, M.; Bryce, C.P.; Ratner, C.; Waber, D.P.; Mokler, D.; Medford, G.; Champagne, F.A.; Rosene, D.L.; McGaughy, J.A.; Sharp, A.J.; Galler, J.R.; Akbarian, S. DNA methylation signatures of early childhood malnutrition associated with impairments in attention and cognition. Biol. Psychiatry, 2016, 80(10), 765-774.
[http://dx.doi.org/10.1016/j.biopsych.2016.03.2100] [PMID: 27184921]
[25]
Dadds, M.R.; Schollar-Root, O.; Lenroot, R.; Moul, C.; Hawes, D.J. Epigenetic regulation of the DRD4 gene and dimensions of attention-deficit/hyperactivity disorder in children. Eur. Child Adolesc. Psychiatry, 2016, 25(10), 1081-1089.
[http://dx.doi.org/10.1007/s00787-016-0828-3] [PMID: 26897359]
[26]
Perroud, N.; Zewdie, S.; Stenz, L.; Adouan, W.; Bavamian, S.; Prada, P.; Nicastro, R.; Hasler, R.; Nallet, A.; Piguet, C.; Paoloni-Giacobino, A.; Aubry, J.M.; Dayer, A. Methylation of serotonin receptor 3A in ADHD, borderline personality, and bipolar disorders: Link with severity of the disorders and childhood maltreatment. Depress. Anxiety, 2016, 33(1), 45-55.
[http://dx.doi.org/10.1002/da.22406] [PMID: 26350166]
[27]
Wilmot, B.; Fry, R.; Smeester, L.; Musser, E.D.; Mill, J.; Nigg, J.T. Methylomic analysis of salivary DNA in childhood ADHD identifies altered DNA methylation in VIPR2. J. Child Psychol. Psychiatry, 2016, 57(2), 152-160.
[http://dx.doi.org/10.1111/jcpp.12457] [PMID: 26304033]
[28]
Heinrich, H.; Grunitz, J.; Stonawski, V.; Frey, S.; Wahl, S.; Albrecht, B.; Goecke, T.W.; Beckmann, M.W.; Kornhuber, J.; Fasching, P.A.; Moll, G.H.; Eichler, A. Attention, cognitive control and motivation in ADHD: Linking event-related brain potentials and DNA methylation patterns in boys at early school age. Sci. Rep., 2017, 7(1), 3823.
[http://dx.doi.org/10.1038/s41598-017-03326-3] [PMID: 28630479]
[29]
Walton, E.; Pingault, J-B.; Cecil, C.A.M.; Gaunt, T.R.; Relton, C.L.; Mill, J.; Barker, E.D. Epigenetic profiling of ADHD symptoms trajectories: a prospective, methylome-wide study. Mol. Psychiatry, 2017, 22(2), 250-256.
[http://dx.doi.org/10.1038/mp.2016.85] [PMID: 27217153]
[30]
Chen, Y-C.; Sudre, G.; Sharp, W.; Donovan, F.; Chandrasekharappa, S.C.; Hansen, N.; Elnitski, L.; Shaw, P. Neuroanatomic, epigenetic and genetic differences in monozygotic twins discordant for attention deficit hyperactivity disorder. Mol. Psychiatry, 2018, 23(3), 683-690.
[http://dx.doi.org/10.1038/mp.2017.45] [PMID: 28322272]
[31]
Wiers, C.E.; Lohoff, F.W.; Lee, J.; Muench, C.; Freeman, C.; Zehra, A.; Marenco, S.; Lipska, B.K.; Auluck, P.K.; Feng, N.; Sun, H.; Goldman, D.; Swanson, J.M.; Wang, G.J.; Volkow, N.D. Methylation of the dopamine transporter gene in blood is associated with striatal dopamine transporter availability in ADHD: A preliminary study. Eur. J. Neurosci., 2018, 48(3), 1884-1895.
[http://dx.doi.org/10.1111/ejn.14067] [PMID: 30033547]
[32]
Pineda-Cirera, L.; Shivalikanjli, A.; Cabana-Domínguez, J.; Demontis, D.; Rajagopal, V.M.; Børglum, A.D.; Faraone, S.V.; Cormand, B.; Fernàndez-Castillo, N. Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder. Transl. Psychiatry, 2019, 9(1), 242.
[http://dx.doi.org/10.1038/s41398-019-0574-7] [PMID: 31582733]
[33]
van Dongen, J.; Zilhão, N.R.; Sugden, K.; Hannon, E.J.; Mill, J.; Caspi, A.; Agnew-Blais, J.; Arseneault, L.; Corcoran, D.L.; Moffitt, T.E.; Poulton, R.; Franke, B.; Boomsma, D.I. Epigenome-wide association study of attention-deficit hyperactivity disorder symptoms in adults. Biol. Psychiatry, 2019, 86(8), 599-607.
[http://dx.doi.org/10.1016/j.biopsych.2019.02.016] [PMID: 31003786]
[34]
Meijer, M.; Klein, M.; Hannon, E.; van der Meer, D.; Hartman, C.; Oosterlaan, J.; Heslenfeld, D.; Hoekstra, P.J.; Buitelaar, J.; Mill, J.; Franke, B. Genome-wide DNA methylation patterns in persistent attention-deficit hyperactivity disorder and in association with impulsive and callous traits. Front. Genet., 2020, 11, 16.
[http://dx.doi.org/10.3389/fgene.2020.00016] [PMID: 32082368]
[35]
Rovira, P.; Sánchez-Mora, C.; Pagerols, M.; Richarte, V.; Corrales, M.; Fadeuilhe, C.; Vilar-Ribó, L.; Arribas, L.; Shireby, G.; Hannon, E.; Mill, J.; Casas, M.; Ramos-Quiroga, J.A.; Soler Artigas, M.; Ribasés, M. Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults. Transl. Psychiatry, 2020, 10(1), 199.
[http://dx.doi.org/10.1038/s41398-020-0860-4] [PMID: 32561708]
[36]
Mooney, M.A.; Ryabinin, P.; Wilmot, B.; Bhatt, P.; Mill, J.; Nigg, J.T. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl. Psychiatry, 2020, 10(1), 8.
[http://dx.doi.org/10.1038/s41398-020-0710-4] [PMID: 32066674]
[37]
Miyake, K.; Miyashita, C.; Ikeda-Araki, A.; Miura, R.; Itoh, S.; Yamazaki, K.; Kobayashi, S.; Masuda, H.; Ooka, T.; Yamagata, Z.; Kishi, R. DNA methylation of GFI1 as a mediator of the association between prenatal smoking exposure and ADHD symptoms at 6 years: The Hokkaido study on environment and children’s health. Clin. Epigenetics, 2021, 13(1), 74.
[http://dx.doi.org/10.1186/s13148-021-01063-z] [PMID: 33827680]
[38]
Li, S-C.; Kuo, H-C.; Huang, L-H.; Chou, W-J.; Lee, S-Y.; Chan, W-C.; Wang, L-J. DNA methylation in LIME1 and SPTBN2 genes is associated with attention deficit in children. Children (Basel), 2021, 8(2), 92.
[http://dx.doi.org/10.3390/children8020092] [PMID: 33572947]
[39]
Neumann, A.; Walton, E.; Alemany, S.; Cecil, C.; González, J.R.; Jima, D.D.; Lahti, J.; Tuominen, S.T.; Barker, E.D.; Binder, E.; Caramaschi, D.; Carracedo, Á.; Czamara, D.; Evandt, J.; Felix, J.F.; Fuemmeler, B.F.; Gutzkow, K.B.; Hoyo, C.; Julvez, J.; Kajantie, E.; Laivuori, H.; Maguire, R.; Maitre, L.; Murphy, S.K.; Murcia, M.; Villa, P.M.; Sharp, G.; Sunyer, J.; Raikkönen, K.; Bakermans-Kranenburg, M.; IJzendoorn, M.V.; Guxens, M.; Relton, C.L.; Tiemeier, H. Association between DNA methylation and ADHD symptoms from birth to school age: a prospective meta-analysis. Transl. Psychiatry, 2020, 10(1), 398.
[http://dx.doi.org/10.1038/s41398-020-01058-z] [PMID: 33184255]
[40]
Fageera, W.; Chaumette, B.; Fortier, M.È.; Grizenko, N.; Labbe, A.; Sengupta, S.M.; Joober, R. Association between COMT methylation and response to treatment in children with ADHD. J. Psychiatr. Res., 2021, 135, 86-93.
[http://dx.doi.org/10.1016/j.jpsychires.2021.01.008] [PMID: 33453563]
[41]
Sigurdardottir, H.L.; Kranz, G.S.; Rami-Mark, C.; James, G.M.; Vanicek, T.; Gryglewski, G.; Berroterán-Infante, N.; Kautzky, A.; Hienert, M.; Traub-Weidinger, T.; Mitterhauser, M.; Wadsak, W.; Hartmann, A.M.; Hacker, M.; Rujescu, D.; Kasper, S.; Lanzenberger, R. Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity-impulsivity symptoms in ADHD measured with PET. Mol. Psychiatry, 2021, 26(3), 1009-1018.
[http://dx.doi.org/10.1038/s41380-019-0461-x] [PMID: 31383926]
[42]
Weiß, A.L.; Meijer, M.; Budeus, B.; Pauper, M.; Hakobjan, M.; Groothuismink, J.; Shi, Y.; Neveling, K.; Buitelaar, J.K.; Hoogman, M.; Franke, B.; Klein, M. DNA methylation associated with persistent ADHD suggests TARBP1 as novel candidate. Neuropharmacology, 2021, 184, 108370.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108370] [PMID: 33137342]
[43]
Xu, Y.; Chen, X-T.; Luo, M.; Tang, Y.; Zhang, G.; Wu, D.; Yang, B.; Ruan, D.Y.; Wang, H.L. Multiple epigenetic factors predict the attention deficit/hyperactivity disorder among the Chinese Han children. J. Psychiatr. Res., 2015, 64, 40-50.
[http://dx.doi.org/10.1016/j.jpsychires.2015.03.006] [PMID: 25840828]
[44]
Kandemir, H.; Erdal, M.E.; Selek, S.; Ay, O.I.; Karababa, I.F.; Kandemir, S.B.; Ay, M.E.; Yılmaz, Ş.G.; Bayazıt, H.; Taşdelen, B. Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neurosci. Lett., 2014, 580, 158-162.
[http://dx.doi.org/10.1016/j.neulet.2014.07.060] [PMID: 25123444]
[45]
Wu, L.H.; Peng, M.; Yu, M.; Zhao, Q.L.; Li, C.; Jin, Y.T.; Jiang, Y.; Chen, Z.Y.; Deng, N.H.; Sun, H.; Wu, X.Z. Circulating microRNA Let-7d in attention deficit/hyperactivity disorder. Neuromolecular Med., 2015, 17(2), 137-146.
[http://dx.doi.org/10.1007/s12017-015-8345-y] [PMID: 25724585]
[46]
Garcia-Martínez, I.; Sánchez-Mora, C.; Pagerols, M.; Richarte, V.; Corrales, M.; Fadeuilhe, C.; Cormand, B.; Casas, M.; Ramos-Quiroga, J.A.; Ribasés, M. Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder. Transl. Psychiatry, 2016, 6(8), e879.
[http://dx.doi.org/10.1038/tp.2016.151] [PMID: 27576168]
[47]
Karakas, U.; Ay, O.I.; Ay, M.E.; Wang, W.; Sungur, M.A.; Çevik, K.; Dogru, G.; Erdal, M.E. Regulating the regulators in attention-deficit hyperactivity disorder: A genetic association study of microRNA biogenesis pathways. OMICS, 2017, 21(6), 352-358.
[http://dx.doi.org/10.1089/omi.2017.0048] [PMID: 28557556]
[48]
Wang, L-J.; Li, S-C.; Lee, M-J.; Chou, M-C.; Chou, W-J.; Lee, S.Y.; Hsu, C.W.; Huang, L.H.; Kuo, H.C. Blood-borne microRNA biomarker evaluation in attention-deficit/hyperactivity disorder of Han Chinese individuals: An exploratory study. Front. Psychiatry, 2018, 9, 227.
[http://dx.doi.org/10.3389/fpsyt.2018.00227] [PMID: 29896131]
[49]
Karadag, M.; Gokcen, C.; Nacarkahya, G.; Namiduru, D.; Dandil, F.; Calisgan, B.; Eroğlu, S. Chronotypical characteristics and related miR-142-3p levels of children with attention deficit and hyperactivity disorder. Psychiatry Res., 2019, 273, 235-239.
[http://dx.doi.org/10.1016/j.psychres.2018.12.175] [PMID: 30658207]
[50]
Aydin, S.U.; Kabukcu Basay, B.; Cetin, G.O.; Gungor Aydin, A.; Tepeli, E. Altered microRNA 5692b and microRNA let-7d expression levels in children and adolescents with attention deficit hyperactivity disorder. J. Psychiatr. Res., 2019, 115, 158-164.
[http://dx.doi.org/10.1016/j.jpsychires.2019.05.021] [PMID: 31146084]
[51]
Sánchez-Mora, C.; Soler Artigas, M.; Garcia-Martínez, I.; Pagerols, M.; Rovira, P.; Richarte, V.; Corrales, M.; Fadeuilhe, C.; Padilla, N.; de la Cruz, X.; Franke, B.; Arias-Vásquez, A.; Casas, M.; Ramos-Quiroga, J.A.; Ribasés, M. Epigenetic signature for attention-deficit/hyperactivity disorder: identification of miR-26b-5p, miR-185-5p, and miR-191-5p as potential biomarkers in peripheral blood mononuclear cells. Neuropsychopharmacology, 2019, 44(5), 890-897.
[http://dx.doi.org/10.1038/s41386-018-0297-0] [PMID: 30568281]
[52]
Zadehbagheri, F.; Hosseini, E.; Bagheri-Hosseinabadi, Z.; Rekabdarkolaee, H.M.; Sadeghi, I. Profiling of miRNAs in serum of children with attention-deficit hyperactivity disorder shows significant alterations. J. Psychiatr. Res., 2019, 109, 185-192.
[http://dx.doi.org/10.1016/j.jpsychires.2018.12.013] [PMID: 30557705]
[53]
Cao, P.; Wang, L.; Cheng, Q.; Sun, X.; Kang, Q.; Dai, L.; Zhou, X.; Song, Z. Changes in serum miRNA-let-7 level in children with attention deficit hyperactivity disorder treated by repetitive transcranial magnetic stimulation or atomoxetine: An exploratory trial. Psychiatry Res., 2019, 274, 189-194.
[http://dx.doi.org/10.1016/j.psychres.2019.02.037] [PMID: 30807970]
[54]
Wang, L-J.; Li, S-C.; Kuo, H-C.; Chou, W-J.; Lee, M-J.; Chou, M.C.; Tseng, H.H.; Hsu, C.F.; Lee, S.Y.; Lin, W.C. Gray matter volume and microRNA levels in patients with attention-deficit/hyperactivity disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2020, 270(8), 1037-1045.
[http://dx.doi.org/10.1007/s00406-019-01032-x] [PMID: 31240443]
[55]
Nuzziello, N.; Craig, F.; Simone, M.; Consiglio, A.; Licciulli, F.; Margari, L.; Grillo, G.; Liuni, S.; Liguori, M. Integrated analysis of microRNA and mRNA expression profiles: An attempt to disentangle the complex interaction network in attention deficit hyperactivity disorder. Brain Sci., 2019, 9(10), 288.
[http://dx.doi.org/10.3390/brainsci9100288] [PMID: 31652596]
[56]
Kalda, A.; Heidmets, L-T.; Shen, H-Y.; Zharkovsky, A.; Chen, J-F. Histone deacetylase inhibitors modulates the induction and expression of amphetamine-induced behavioral sensitization partially through an associated learning of the environment in mice. Behav. Brain Res., 2007, 181(1), 76-84.
[http://dx.doi.org/10.1016/j.bbr.2007.03.027] [PMID: 17477979]
[57]
Shen, H-Y.; Kalda, A.; Yu, L.; Ferrara, J.; Zhu, J.; Chen, J-F. Additive effects of histone deacetylase inhibitors and amphetamine on histone H4 acetylation, cAMP responsive element binding protein phosphorylation and DeltaFosB expression in the striatum and locomotor sensitization in mice. Neuroscience, 2008, 157(3), 644-655.
[http://dx.doi.org/10.1016/j.neuroscience.2008.09.019] [PMID: 18848971]
[58]
Mychasiuk, R.; Muhammad, A.; Ilnytskyy, S.; Kolb, B. Persistent gene expression changes in NAc, mPFC, and OFC associated with previous nicotine or amphetamine exposure. Behav. Brain Res., 2013, 256, 655-661.
[http://dx.doi.org/10.1016/j.bbr.2013.09.006] [PMID: 24021241]
[59]
Wu, T.; Chen, C.; Yang, L.; Zhang, M.; Zhang, X.; Jia, J.; Wang, J.; Fu, Z.; Cui, X.; Ji, C.; Guo, X.; Tong, M.; Chen, R.; Hong, Q.; Chi, X. Distinct lncRNA expression profiles in the prefrontal cortex of SD rats after exposure to methylphenidate. Biomed. Pharmacother., 2015, 70, 239-247.
[http://dx.doi.org/10.1016/j.biopha.2015.01.023] [PMID: 25776507]
[60]
Ding, K.; Yang, J.; Reynolds, G.P.; Chen, B.; Shao, J.; Liu, R.; Qian, Q.; Liu, H.; Yang, R.; Wen, J.; Kang, C. DAT1 methylation is associated with methylphenidate response on oppositional and hyperactive-impulsive symptoms in children and adolescents with ADHD. World Biol. Psychiatr., 2017, 18(4), 291-299.
[http://dx.doi.org/10.1080/15622975.2016.1224928] [PMID: 27676100]
[61]
Kim, J.I.; Kim, J-W.; Shin, I.; Kim, B-N. Effects of interaction between DRD4 methylation and prenatal maternal stress on methylphenidate-induced changes in continuous performance test performance in youth with attention-deficit hyperactivity disorder. J. Child Adolesc. Psychopharmacol., 2018, 28(8), 562-570.
[http://dx.doi.org/10.1089/cap.2018.0054] [PMID: 29905488]
[62]
McCowan, T.J.; Dhasarathy, A.; Carvelli, L. The epigenetic mechanisms of amphetamine. J. Addict. Prev., 2015, 2015(Suppl. 1) 10.13188/2330
[http://dx.doi.org/10.13188/2330] [PMID: 27453897]
[63]
Biagioni, F.; Ferese, R.; Limanaqi, F.; Madonna, M.; Lenzi, P.; Gambardella, S.; Fornai, F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res., 2019, 1719, 157-175.
[http://dx.doi.org/10.1016/j.brainres.2019.05.035] [PMID: 31150652]
[64]
Chiu, C.T.; Wang, Z.; Hunsberger, J.G.; Chuang, D.M. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol. Rev., 2013, 65(1), 105-142.
[http://dx.doi.org/10.1124/pr.111.005512] [PMID: 23300133]
[65]
Miyazaki, M.; Ito, H.; Saijo, T.; Mori, K.; Kagami, S.; Kuroda, Y. Favorable response of ADHD with giant SEP to extended-release valproate. Brain Dev., 2006, 28(7), 470-472.
[http://dx.doi.org/10.1016/j.braindev.2006.01.005] [PMID: 16554135]
[66]
Blader, J.C.; Schooler, N.R.; Jensen, P.S.; Pliszka, S.R.; Kafantaris, V. Adjunctive divalproex versus placebo for children with ADHD and aggression refractory to stimulant monotherapy. Am. J. Psychiatry, 2009, 166(12), 1392-1401.
[http://dx.doi.org/10.1176/appi.ajp.2009.09020233] [PMID: 19884222]
[67]
Torrioli, M.; Vernacotola, S.; Setini, C.; Bevilacqua, F.; Martinelli, D.; Snape, M.; Hutchison, J.A.; Di Raimo, F.R.; Tabolacci, E.; Neri, G. Treatment with valproic acid ameliorates ADHD symptoms in fragile X syndrome boys. Am. J. Med. Genet. A., 2010, 152A(6), 1420-1427.
[http://dx.doi.org/10.1002/ajmg.a.33484] [PMID: 20503316]
[68]
Antonijoan, R.M.; Ferrero-Cafiero, J.M.; Coimbra, J.; Puntes, M.; Martínez-Colomer, J.; Arévalo, M.I.; Mascaró, C.; Molinero, C.; Buesa, C.; Maes, T. Ferrero-Cafiero, Coimbra, J., Puntes, M., Martinez-Colomer, J., Arevalo, M.I First-in-human randomized trial to assess safety, tolerability, pharmacokinetics and pharmacodynamics of the KDM1A inhibitor vafidemstat. CNS Drugs, 2021, 35(3), 331-344.
[http://dx.doi.org/10.1007/s40263-021-00797-x] [PMID: 33755924]
[69]
Bakulski, K.M.; Halladay, A.; Hu, V.W.; Mill, J.; Fallin, M.D. Epigenetic research in neuropsychiatric disorders: The “Tissue Issue”. Curr. Behav. Neurosci. Rep., 2016, 3(3), 264-274.
[http://dx.doi.org/10.1007/s40473-016-0083-4] [PMID: 28093577]
[70]
Edgar, R.D.; Jones, M.J.; Meaney, M.J.; Turecki, G.; Kobor, M.S. BECon: a tool for interpreting DNA methylation findings from blood in the context of brain. Transl. Psychiatry, 2017, 7(8), e1187.
[http://dx.doi.org/10.1038/tp.2017.171] [PMID: 28763057]
[71]
Braun, P.R.; Han, S.; Hing, B.; Nagahama, Y.; Gaul, L.N.; Heinzman, J.T.; Grossbach, A.J.; Close, L.; Dlouhy, B.J.; Howard, M.A., III; Kawasaki, H.; Potash, J.B.; Shinozaki, G. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl. Psychiatry, 2019, 9(1), 47.
[http://dx.doi.org/10.1038/s41398-019-0376-y] [PMID: 30705257]
[72]
Takahashi, N.; Ishizuka, K.; Inada, T. Peripheral biomarkers of attention-deficit hyperactivity disorder: Current status and future perspective. J. Psychiatr. Res., 2021, 137, 465-470.
[http://dx.doi.org/10.1016/j.jpsychires.2021.03.012] [PMID: 33798973]
[73]
Veronezi, G.M.B.; Felisbino, M.B.; Gatti, M.S.V.; Mello, M.L.S.; Vidal, B.C. DNA methylation changes in valproic acid-treated HeLa cells as assessed by image analysis, Immunofluorescence and vibrational microspectroscopy. PLoS One, 2017, 12(1), e0170740.
[http://dx.doi.org/10.1371/journal.pone.0170740] [PMID: 28114349]
[74]
Guidotti, A.; Grayson, D.R. DNA methylation and demethylation as targets for antipsychotic therapy. Dialogues Clin. Neurosci., 2014, 16(3), 419-429.
[http://dx.doi.org/10.31887/DCNS.2014.16.3/aguidotti] [PMID: 25364290]
[75]
Kellogg, M.; Meador, K.J. Neurodevelopmental effects of antiepileptic drugs. Neurochem. Res., 2017, 42(7), 2065-2070.
[http://dx.doi.org/10.1007/s11064-017-2262-4] [PMID: 28424947]
[76]
Veroniki, A.A.; Rios, P.; Cogo, E.; Straus, S.E.; Finkelstein, Y.; Kealey, R.; Reynen, E.; Soobiah, C.; Thavorn, K.; Hutton, B.; Hemmelgarn, B.R.; Yazdi, F.; D’Souza, J.; MacDonald, H.; Tricco, A.C. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: a systematic review and network meta-analysis. BMJ Open, 2017, 7(7), e017248.
[http://dx.doi.org/10.1136/bmjopen-2017-017248] [PMID: 28729328]
[77]
Christensen, J.; Pedersen, L.; Sun, Y.; Dreier, J.W.; Brikell, I.; Dalsgaard, S. Association of prenatal exposure to valproate and other antiepileptic drugs with risk for attention-deficit hyperactivity disorder in offspring. JAMA Netw. Open, 2019, 2(1), e186606.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.6606] [PMID: 30646190]
[78]
Baldwin, D.S.; Amaro, H.J.F. Prescription of valproate-containing medicines in women of childbearing potential who have psychiatric disorders: Is it worth the risk? CNS Drugs, 2020, 34(2), 163-169.
[http://dx.doi.org/10.1007/s40263-019-00694-4] [PMID: 31845215]
[79]
Ganguly, S.; Seth, S. A translational perspective on histone acetylation modulators in psychiatric disorders. Psychopharmacology (Berl.), 2018, 235(7), 1867-1873.
[http://dx.doi.org/10.1007/s00213-018-4947-z] [PMID: 29915963]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy