Skip to main content
Log in

Robust bioinspired surfaces and their exploitation for petroleum hydrocarbon remediation

  • Current Trends and Research in Industrial Wastewater Treatment through Bioreactor Approach
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The current improvement in science and engineering, actively dealing with surfaces and interfaces, turns into a functioning control with a thriving advancement propensity. Superlyophobic/superlyophilic phenomena in surface sciences have pulled in broad considerations of researchers and specialists. Inspired by the natural and living organism, researchers have designed different biomimetic materials with exceptional surface wettability, such as the smart wetting of asymmetric spider silk surfaces. These smart materials with superlyophobic/superlyophilic wettability are generally utilized for water assortment, self-cleaning, fluid transportation and separation, and many researchers’ domains. Among them, emulsion separation, including division of oil-water blend, mixtures of immiscible liquids and oil-water emulsions, is highlighted by an increasing number of researchers. Numerous materials with one- and two-dimensional morphology, smart surfaces, and super wettability have been effectively designed and utilized in various scientific research applications. We expect that these bioinspired materials with super wettability can have promising applications in practical for emulsion destabilization and liquid transportation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study

References

  • Abuilaiwi FA, Awais M, Qazi UY, Ali F, & Afzal A (2020) Al3+ doping reduces the electron/hole recombination in photoluminescent copper ferrite (CuFe2−xAlxO4) nanocrystallites. Boletín de la Sociedad Española de Cerámica y Vidrio.

  • Ahmad W, Khan A, Ali N, Khan S, Uddin S, Malik S, Ali N, Khan H, Khan H, Bilal M (2021) Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environ Sci Pollut Res 28(7):8074–8087

    Article  CAS  Google Scholar 

  • Ali N, Zhang B, Zhang H, Li W, Zaman W, Tian L, Zhang Q (2015a) Novel Janus magnetic micro particle synthesis and its applications as a demulsifier for breaking heavy crude oil and water emulsion. Fuel 141:258–267

    Article  CAS  Google Scholar 

  • Ali N, Zhang B, Zhang H, Zaman W, Li X, Li W, Zhang Q (2015b) Interfacially active and magnetically responsive composite nanoparticles with raspberry like structure; synthesis and its applications for heavy crude oil/water separation. Colloids Surf A Physicochem Eng Asp 472:38–49

    Article  CAS  Google Scholar 

  • Ali N, Zhang B, Zhang H, Zaman W, Ali S, Ali Z, Li W, Zhang Q (2015c) Monodispers and multifunctional magnetic composite core shell microspheres for demulsification applications. J Chin Chem Soc 62(8):695–702

    Article  CAS  Google Scholar 

  • Ali N, Baoliang Z, Zhang H, Zaman W, Ali S, Ali Z, Li W, Zhang Q (2015d) Iron oxide-based polymeric magnetic microspheres with a core shell structure: from controlled synthesis to demulsification applications. J Polym Res 22(11):1–12

    Article  CAS  Google Scholar 

  • Ali F, Ibrahim M, Khan F, Bibi I, Shah SW (2018) Binding affinities of cationic dyes in the presence of activated charcoal and anionic surfactant in the premicellar region. Mater Res Express 5(3):035405

    Article  Google Scholar 

  • Ali N, Zaman H, Bilal M, Nazir MS, Iqbal HM (2019) Environmental perspectives of interfacially active and magnetically recoverable composite materials–a review. Sci Total Environ 670:523–538

    Article  CAS  Google Scholar 

  • Ali F, Ali N, Bibi I, Said A, Nawaz S, Ali Z, Salman SM, Iqbal HMN, Bilal M (2020a) Adsorption isotherm, kinetics and thermodynamic of acid blue and basic blue dyes onto activated charcoal. Case Studies in Chemical and Environmental Engineering 2:100040

  • Ali N, Bilal M, Khan A, Ali F, Iqbal HM (2020b) Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Sci Total Environ 704:135391

  • Ali N, Bilal M, Khan A, Ali F, Iqbal HM (2020c) Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation. TrAC Trends Anal Chem 115902:115902

  • Ali N, Bilal M, Khan A, Ali F, Yang Y, Khan M, Adil SF, Iqbal HM (2020d) Dynamics of oil-water interface demulsification using multifunctional magnetic hybrid and assembly materials. J Mol Liq 113434:113434

  • Ali N, Khan A, Bilal M, Malik S, Badshah S, Iqbal H (2020e)Chitosan-based bio-composite modified with thiocarbamate moiety for decontamination of cations from the aqueous media. Molecules 25(1):226

  • An C, Huang G, Yao Y, Zhao S (2017) Emerging usage of electrocoagulation technology for oil removal from wastewater: a review. Sci Total Environ 579:537–556

    Article  CAS  Google Scholar 

  • Atehortúa CMG, Pérez N, Andrade MAB, Pereira LOV, Adamowski JC (2019)Water-in-oil emulsions separation using an ultrasonic standing wave coalescence chamber. Ultrason Sonochem 57:57–61

    Article  Google Scholar 

  • Aziz A, Ali N, Khan A, Bilal M, Malik S, Ali N, Khan H (2020)Chitosan-zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes. Int J Biol Macromol 153:502–512

    Article  CAS  Google Scholar 

  • Bai, H., Sun, R., Ju, J., Yao, X., Zheng, Y., & Jiang, L. (2011). Large-scale fabrication of bioinspired fibers for directional water collection. small, 7(24), 3429-3433.

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  CAS  Google Scholar 

  • Basak G, Hazra C, Sen R (2020) Biofunctionalized nanomaterials for in situ clean-up of hydrocarbon contamination: a quantum jump in global bioremediation research. J Environ Manag 256:109913

    Article  CAS  Google Scholar 

  • Bhushan B (2020) Bioinspired water harvesting, purification, and oil-water separation. Springer

    Book  Google Scholar 

  • Cao M, Ju J, Li K, Dou S, Liu K, Jiang L (2014) Facile and large-scale fabrication of a cactus-inspired continuous fog collector. Adv Funct Mater 24(21):3235–3240

    Article  CAS  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  • Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z, Jiang L (2016) Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532(7597):85–89

    Article  CAS  Google Scholar 

  • De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40

    Google Scholar 

  • Dong Z, Wu L, Wang J, Ma J, Jiang L (2015) Superwettability controlled overflow. Adv Mater 27(10):1745–1750

    Article  CAS  Google Scholar 

  • Dong H, Zheng Y, Wang N, Bai H, Wang L, Wu J, Zhao Y, Jiang L (2016) Highly efficient fog collection unit by integrating artificial spider silks. Adv Mater Interfaces 3(11):1500831

    Article  Google Scholar 

  • Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7(21):9804–9828

    Article  CAS  Google Scholar 

  • Drelich JW, Boinovich L, Chibowski E, Della Volpe C, Hołysz L, Marmur A, Siboni S (2019) Contact angles: history of over 200 years of open questions. Surface Innovations 8(1–2):3–27

    Google Scholar 

  • Eow JS, Ghadiri M (2002) Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chem Eng J 85(2-3):357–368

    Article  CAS  Google Scholar 

  • Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002)Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

    Article  CAS  Google Scholar 

  • Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem 116(15):2046–2048

    Article  Google Scholar 

  • Fujishima AKIRA, Rao TN, Tryk DA (2000) TiO2 photocatalysts and diamond electrodes. Electrochim Acta 45(28):4683–4690

    Article  CAS  Google Scholar 

  • Gao N, Geyer F, Pilat DW, Wooh S, Vollmer D, Butt HJ, Berger R (2018) How drops start sliding over solid surfaces. Nat Phys 14(2):191–196

    Article  CAS  Google Scholar 

  • Ge J, Jin Q, Zong D, Yu J, Ding B (2018a) Biomimetic multilayer nanofibrous membranes with elaborated superwettability for effective purification of emulsified oily wastewater. ACS Appl Mater Interfaces 10(18):16183–16192

    Article  CAS  Google Scholar 

  • Ge J, Zong D, Jin Q, Yu J, Ding B (2018b) Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv Funct Mater 28(10):1705051

    Article  Google Scholar 

  • Hou L, Wang L, Wang N, Guo F, Liu J, Chen Y, Liu J, Zhao Y, Jiang L (2016) Separation of organic liquid mixture by flexible nanofibrous membranes with precisely tunable wettability. NPG Asia Materials 8(12):e334–e334

    Article  CAS  Google Scholar 

  • Hou L, Wang N, Wu J, Cui Z, Jiang L, Zhao Y (2018) Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv Funct Mater 28(49):1801114

    Article  Google Scholar 

  • Hou L, Wang N, Man X, Cui Z, Wu J, Liu J, Li S, Gao Y, Li D, Jiang L, Zhao Y (2019) Interpenetrating Janus membrane for high rectification ratio liquid unidirectional penetration. ACS Nano 13(4):4124–4132

    Article  CAS  Google Scholar 

  • Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L (2012) A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun 3(1):1–6

    Article  Google Scholar 

  • Khan A, Ali N, Bilal M, Malik S, Badshah S, Iqbal H (2019) Engineering functionalized chitosan-based sorbent material: characterization and sorption of toxic elements. Appl Sci 9(23):5138

    Article  CAS  Google Scholar 

  • Khan A, Malik S, Ali N, Bilal M, El-Shazly M, & Iqbal HM (2021a). Biopolymer-based sorbents for emerging pollutants. In Sorbents Materials for Controlling Environmental Pollution (pp. 463-491). Elsevier.

  • Khan S, Khan A, Ali N, Ahmad S, Ahmad W, Malik S, Ali N, Khan H, Shah S, Bilal M (2021b) Degradation of Congo red dye using ternary metal selenide-chitosan microspheres as robust and reusable catalysts. Environ Technol Innov 22:101402

    Article  CAS  Google Scholar 

  • Khan A, Ali N, Malik S, Bilal M, Munir H, Ferreira LFR, & Iqbal HM (2021c)Chitosan-based green sorbents for toxic cations removal. In Sorbents Materials for Controlling Environmental Pollution (pp. 323-352). Elsevier.

  • Kuang M, Wang J, Jiang L (2016)Bio-inspired photonic crystals with superwettability. Chem Soc Rev 45(24):6833–6854

    Article  CAS  Google Scholar 

  • Langmuir I (1920) The mechanism of the surface phenomena of flotation. Trans Faraday Soc 15(June):62–74

    Article  CAS  Google Scholar 

  • Li H, Wang X, Song Y, Liu Y, Li Q, Jiang L, Zhu D (2001) Super-“amphiphobic” aligned carbon nanotube films. Angew Chem Int Ed 40(9):1743–1746

    Article  CAS  Google Scholar 

  • Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, Jiang L (2013) Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water. Nat Commun 4(1):1–7

    Article  Google Scholar 

  • Li C, Wu L, Yu C, Dong Z, Jiang L (2017a)Peristome-mimetic curved surface for spontaneous and directional separation of micro-water-in-oil drops. Angew Chem 129(44):13811–13816

    Article  Google Scholar 

  • Li C, Wu L, Yu C, Dong Z, Jiang L (2017b)Peristome-mimetic curved surface for spontaneous and directional separation of micro water-in-oil drops. Angew Chem Int Ed Eng 56:13623–13628. https://doi.org/10.1002/anie.201706665

    Article  CAS  Google Scholar 

  • Li J, Zhao Z, Li D, Tang X, Feng H, Qi W, Wang Q (2017c) Multifunctional walnut shell layer used for oil/water mixtures separation and dyes adsorption. Appl Surf Sci 419:869–874

    Article  CAS  Google Scholar 

  • Li J, Bai X, Tang X, Zha F, Feng H, Qi W (2018a) Underwater superoleophobic/underoil superhydrophobic corn cob coated meshes for on-demandoil/water separation. Sep Purif Technol 195:232–237

    Article  CAS  Google Scholar 

  • Li J, Xu C, Zhang Y, Tang X, Qi W, Wang Q (2018b)Gravity-directed separation of both immiscible and emulsified oil/water mixtures utilizing coconut shell layer. J Colloid Interface Sci 511:233–242

    Article  CAS  Google Scholar 

  • Liang L, Dong Y, Wang H, Meng X (2019) Smart cotton fabric with CO 2-responsive wettability for controlled oil/water separation. Adv Fiber Mater 1(3):222–230

    Article  Google Scholar 

  • Lin X, Chen Y, Liu N, Cao Y, Xu L, Zhang W, Feng L (2016) In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO2nanocluster-based mesh. Nanoscale 8(16):8525–8529

    Article  CAS  Google Scholar 

  • Liu J, Wang L, Guo F, Hou L, Chen Y, Liu J, Wang N, Zhao Y, Jiang L (2016) Opposite and complementary: a superhydrophobic–superhydrophilic integrated system for high-flux, high-efficiency and continuous oil/water separation. J Mater Chem A 4(12):4365–4370

    Article  CAS  Google Scholar 

  • Liu J, Wang L, Wang N, Guo F, Hou L, Chen Y, Liu J, Zhao Y, Jiang L (2017) A robust Cu (OH)2 nanoneedles mesh with tunable wettability for nonaqueous multiphase liquid separation. Small 13(4):1600499

    Article  Google Scholar 

  • Lo YH, Yang CY, Chang HK, Hung WC, Chen PY (2017) Bioinspired diatomite membrane with selective superwettability for oil/water separation. Sci Rep 7(1):1–11

    Article  Google Scholar 

  • McCerery R, Woodward J, McHale G, Winter K, Armstrong S, Orme BV (2021) Slippery liquid-infused porous surfaces: the effect of oil on the water repellence of hydrophobic and superhydrophobic soils. Eur J Soil Sci 72(2):963–978

    Article  CAS  Google Scholar 

  • Naghdi FG, Schenk PM (2016) Dissolved air flotation and centrifugation as methods for oil recovery from ruptured microalgal cells. Bioresour Technol 218:428–435

    Article  Google Scholar 

  • Nawaz A, Khan A, Ali N, Ali N, Bilal M (2020) Fabrication and characterization of new ternary ferrites-chitosan nanocomposite for solar-light driven photocatalytic degradation of a model textile dye. Environ Technol Innov 20:101079

    Article  CAS  Google Scholar 

  • Omran BA, Whitehead KA, & Baek KH (2021)One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: applications and potential biotoxicity. Colloids and Surfaces B: Biointerfaces, 111578.

  • Onda T, Shibuichi S, Satoh N, Tsujii K (1996)Super-water-repellent fractal surfaces. Langmuir 12(9):2125–2127

    Article  CAS  Google Scholar 

  • Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414(6859):33–34

    Article  CAS  Google Scholar 

  • Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003)Long-term ecosystem response to the Exxon Valdez oil spill. Science 302(5653):2082–2086

    Article  CAS  Google Scholar 

  • Qiu M, Wang N, Cui Z, Liu J, Hou L, Liu J, Hu R, Zhang H, Zhao Y (2018) Evolution of copper oxide nanoneedle mesh with subtle regulated lyophobicity for high efficiency liquid separation. J Mater Chem A 6(3):817–822

    Article  CAS  Google Scholar 

  • Qiu S, Hou L, Liu J, Guo F, Zhang Y, Zhang L, Liu K, Wang N, Zhao Y (2017) High-flux, continuous oil spill collection by using a hydrophobic/oleophilic nanofibrous container. RSC Adv 7(32):19434–19438

    Article  CAS  Google Scholar 

  • Scriven LE, Sternling CV (1960) The marangoni effects. Nature 187:186–188. https://doi.org/10.1038/187186a0

    Article  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. Nature 452:301–310

  • Singh V, Purkait MK, Das C (2011)Cross-flow microfiltration of industrial oily wastewater: experimental and theoretical consideration. Sep Sci Technol 46(8):1213–1223

    Article  CAS  Google Scholar 

  • Wang B, Guo Z (2013) Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl Phys Lett 103(6):063704

    Article  Google Scholar 

  • Wang L, Zhao Y, Tian Y, Jiang L (2015) A general strategy for the separation of immiscible organic liquids by manipulating the surface tensions of nanofibrous membranes. Angew Chem 127(49):14945–14950

    Article  Google Scholar 

  • Wang Y, Di J, Wang L, Li X, Wang N, Wang B et al (2017)Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nat Commun 8(1):1–7

    Article  Google Scholar 

  • Wang N, Wang Y, Shang B, Wen P, Peng B, Deng Z (2018) Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation. J Colloid Interface Sci 531:300–310

    Article  CAS  Google Scholar 

  • Wang J, Yi S, Yang Z, Chen Y, Jiang L, Wong CP (2020) Laser direct structuring of bioinspired spine with backward microbarbs and hierarchical microchannels for ultrafast water transport and efficient fog harvesting. ACS Appl Mater Interfaces 12(18):21080–21087

    Article  CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  CAS  Google Scholar 

  • Xiong Y, Huang X, Liu J, Lu L, Peng K (2018) Preparation of magnetically responsive bacterial demulsifier with special surface properties for efficient demulsification of water/oil emulsion. Renew Energy 129:786–793

    Article  CAS  Google Scholar 

  • Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 23(37):4270–4273

    Article  CAS  Google Scholar 

  • Yadav S, Jain A, Malhotra P (2021) Bioinspired synthesis and green ecological applications of reduced graphene oxide based ternary nanocomposites. Sustain Mater Technol 29:e00315

    CAS  Google Scholar 

  • Yang S, Yin K, Wu J, Wu Z, Chu D, He J, Duan JA (2019) Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation. Nanoscale 11(38):17607–17614

    Article  CAS  Google Scholar 

  • Yang Y, Ali N, Khan A, Khan S, Khan S, Khan H, Xiaoqi S, Ahmad W, Uddin S, Ali N, Bilal M (2021)Chitosan-capped ternary metal selenide nanocatalysts for efficient degradation of Congo red dye in sunlight irradiation. Int J Biol Macromol 167:169–181

    Article  CAS  Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond 95:65–87. https://doi.org/10.1098/rstl.1805.0005

    Article  Google Scholar 

  • Yu Z, Yun FF, Wang Y, Yao L, Dou S, Liu K, Jiang L, Wang X (2017) Desert beetle-inspired superwettable patterned surfaces for water harvesting. Small 13(36):1701403

    Article  Google Scholar 

  • Yu C, Zhang L, Ru Y, Li N, Li C, Gao C, Dong Z, Jiang L (2018) Drop cargo transfer via unidirectional lubricant spreading on peristome-mimetic surface. ACS Nano 12(11):11307–11315

    Article  CAS  Google Scholar 

  • Yue G, Wang Y, Li D, Hou L, Cui Z, Li Q, Wang N, Zhao Y (2020) Bioinspired surface with special wettability for liquid transportation and separation. Sustain Mater Technol 25:e00175

    CAS  Google Scholar 

  • Zaman H, Ali N, Gao X, Zhang S, Hong K, Bilal M (2019) Effect of pH and salinity on stability and dynamic properties of magnetic composite amphiphilic demulsifier molecules at the oil-water interface. J Mol Liq 290:111186

    Article  CAS  Google Scholar 

  • Zhang J, Wang J, Zhao Y, Xu L, Gao X, Zheng Y, Jiang L (2008) How does the leaf margin make the lotus surface dry as the lotus leaf floats on water? Soft Matter 4(11):2232–2237

    Article  CAS  Google Scholar 

  • Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013)Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiencyoil/water separation. Adv Mater 25(30):4192–4198

    Article  CAS  Google Scholar 

  • Zhang P, Lin L, Zang D, Guo X, Liu M (2017) Designing bioinspired anti-biofouling surfaces based on a superwettability strategy. Small 13(4):1503334

    Article  Google Scholar 

  • Zhang S, Jiang G, Gao S, Jin H, Zhu Y, Zhang F, Jin J (2018) Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation. ACS Nano 12(1):795–803

    Article  CAS  Google Scholar 

  • Zhang B, Zhang L, Zhang X (2019) Bioremediation of petroleum hydrocarbon-contaminated soil by petroleum-degrading bacteria immobilized on biochar. RSC Adv 9(60):35304–35311

    Article  CAS  Google Scholar 

  • Zhao Y, Yu C, Lan H, Cao M, Jiang L (2017) Improved interfacial floatability of superhydrophobic/superhydrophilic Janus sheet inspired by lotus leaf. Adv Funct Mater 27(27):1701466

    Article  Google Scholar 

  • Zheng Y, Bai H, Huang Z, Tian X, Nie FQ, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463(7281):640–643

    Article  CAS  Google Scholar 

  • Zeng X, Qian L, Yuan X, Zhou C, Li Z, Cheng J, Xu S, Wang S, Pi P, Wen X (2017) Inspired by stenocara beetles: from water collection to high-efficiencywater-in-oil emulsion separation. ACS Nano 11(1):760–769

    Article  CAS  Google Scholar 

  • Zhu Z, Li Z, Zhong L, Zhang R, Cui F, Wang W (2019)Dual-biomimetic superwetting silica nanofibrous membrane for oily water purification. J Membr Sci 572:73–81

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Jiangsu Provincial Engineering Laboratory for Advanced Materials of Salt Chemical Industry, No. SF201311, and National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, P.R. China, No SF201801. Consejo Nacional de Ciencia y Tecnología (CONACYT) is thankfully acknowledged for partially supporting this work under Sistema Nacional de Investigadores (SNI) program awarded to Hafiz M.N. Iqbal (CVU 735340).

Funding

No external funding was received for this review work.

Author information

Authors and Affiliations

Authors

Contributions

NA, MB, and HMNI conceptualized and set the review theme. NA, ELG, CD, and YY performed an initial literature evaluation and screened the data as per the theme of the review. NA, ELG, AK, and FA compiled the literate draft and figures. NA, MB, and HMNI reviewed and edited the final manuscript and communicated the submission. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Nisar Ali, Muhammad Bilal or Hafiz M. N. Iqbal.

Ethics declarations

Consent to publish

All authors read and approved the final manuscript and happy to give their consent to publish this work in the journal Environmental Science and Pollution Research(ESPR) subject to peer-review as per ESPR policy.

Consent for publication

Not applicable

Research involving human participants and/or animals

Not applicable

Competing interests

The authors declare no conflicting interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Gyllye, E.L., Duanmu, C. et al. Robust bioinspired surfaces and their exploitation for petroleum hydrocarbon remediation. Environ Sci Pollut Res 29, 61881–61895 (2022). https://doi.org/10.1007/s11356-021-16525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16525-3

Keywords

Navigation