Skip to main content

Advertisement

Log in

Biochemical characterization of Aedes aegypti (Linnaeus) (Diptera: Culicidae) resistance to deltamethrin, fipronil, and imidacloprid

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

Aedes aegypti is an important vector of dengue fever, dengue hemorrhagic fever and yellow fever, chikungunya, and Zika virus. The objective was to evaluate the resistance of A. aegypti exposed to insecticides with different action modes (deltamethrin, imidacloprid, and fipronil) under intense selection pressure for 10 generations in laboratory. Bioassays were conducted according to World Health Organization. Biochemical assay performed after selection with deltamethrin (Delta-SEL), fipronil (Fipro-SEL), and imidacloprid (Imida-SEL) from G1 to G10 was used for the assessment of detoxification enzymes (esterase (EST), acetylcholinesterase (AChE), glutathione S-transferases (GST), and acid and alkaline phosphatases (ACP and ALP)). The Fipro-SEL (G10) had high resistance (77-fold), whereas Delta-SEL and Imida-SEL populations presented very high resistance with 118 and 372-fold, respectively, in comparison with unselected (UNSEL). The levels of EST, AChE, GST, ACP, and ALP enzymes amplified on application from G1 to G10. The enzymes contributing in resistance development of insecticides were as follows: GST (20.7 µmol/min/mg of protein) in Delta-SEL (G10), while AChE 9.71 µmol/min/mg of protein in Imida-SEL (G10) and the peak ACP and ALP enzyme activities 13.32 and 12.93 µmol/min/mg of protein, respectively, in Fipro-SEL (G10). The results showed that detoxification enzymes trigger insecticide resistance in A. aegypti and their suppression may aid in the resistance breakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data of the current research is available from the corresponding author on request.

Change history

References

  • Abbas, N., Khan, H. A. A., & Shad, S. A. (2014). Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): A potential vector for disease transmission. Parasitology Research, 113(4), 1343–1352.

    Article  Google Scholar 

  • Abbas, N., Shad, S. A., & Razaq, M. (2012). Fitness cost, cross resistance and realized heritability of resistance to imidacloprid in Spodoptera litura (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 103(3), 181–188.

    Article  CAS  Google Scholar 

  • Abbink, J. (1991). The biochemistry of imidacloprid. Pflanzenschutz-Nachrichten Bayer (Germany, FR).

  • Adam, I., Jumaa, A.M., Elbashir, H.M., & Karsany, M.S. (2010). Research maternal and perinatal outcomes of dengue in PortSudan, Eastern Sudan. Parity, 2(2.3), 7:153.

  • Ahmad, I., Astari, S., & Tan, M. (2007). Resistance of Aedes aegypti (Diptera: Culicidae) in 2006 to pyrethroid insecticides. Pakistan Journal of Biological Sciences, 10, 3688–3692.

    Article  CAS  Google Scholar 

  • Ahmad, M., & McCaffery, A. R. (1999). Penetration and metabolism of trans-cypermethrin in a susceptible and a pyrethroid-resistant strain of Helicoverpa armigera. Pesticide Biochemistry and Physiology, 65(1), 6–14.

    Article  CAS  Google Scholar 

  • Andersch, M.A., & Szczypinski, A.J. (1947) Use of p-nitrophenylphosphate as the substrate in determination of serum acid phosphatase. American Journal of Clinical Pathology, 17(7_ts), 571–574.

  • Aponte, H. A., Penilla, R. P., Dzul-Manzanilla, F., Che-Mendoza, A., López, A. D., Solis, F., Manrique-Saide, P., Ranson, H., Lenhart, A., & McCall, P. J. (2013). The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state. Mexico. Pesticide Biochemistry and Physiology, 107(2), 226–234.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.

    Article  CAS  Google Scholar 

  • Che-Mendoza, A., Penilla, R. P., & Rodríguez, D. A. (2009). Insecticide resistance and glutathione S-transferases in mosquitoes: A review. African Journal of Biotechnology, 8(8), 1386–1397.

    CAS  Google Scholar 

  • Chouin-Carneiro, T., Vega-Rua, A., Vazeille, M., Yebakima, A., Girod, R., Goindin, D., Dupont-Rouzeyrol, M., Lourenco-de-Oliveira, R., & Failloux, A.B. (2016). Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Neglected Tropical Diseases, 10(3), e0004543.

  • Corbel, V., Duchon, S., Zaim, M., & Hougard, J. M. (2004). Dinotefuran: A potential neonicotinoid insecticide against resistant mosquitoes. Journal of Medical Entomology, 41(4), 712–717.

    Article  CAS  Google Scholar 

  • Corbet, P.S., & Smith, S.M. (1974). Diel periodicities of landing of nulliparous and parous Aedes aegypti (L.) at Dar es Salaam, Tanzania (Diptera, Culicidae). Bulletin of Entomological Research, 64(1),111–121.

  • Damayanthi, B., & Karunaratne, S. (2005). Biochemical characterization of insecticide resistance in insect pests of vegetables and predatory ladybird beetles. Journal of National Science Foundation of Sri Lanka, 33(2), 115–122.

    Article  Google Scholar 

  • Davari, B., Vatandoost, H., Oshaghi, M., Ladonni, H., Enayati, A., Shaeghi, M., Basseri, H., Rassi, Y., & Hanafi-Bojd, A. (2007). Selection of Anopheles stephensi with DDT and dieldrin and cross-resistance spectrum to pyrethroids and fipronil. Pesticide Biochemistry and Physiology, 89(2), 97–103.

    Article  CAS  Google Scholar 

  • David, J. P., Faucon, F., Chandor-Proust, A., Poupardin, R., Riaz, M. A., Bonin, A., Navratil, V., & Reynaud, S. (2014). Comparative analysis of response to selection with three insecticides in the dengue mosquito Aedes aegypti using mRNA sequencing. BMC Genomics, 15(1), 174.

    Article  Google Scholar 

  • Finney, D. (1971). A statistical treatment of the sigmoid response curve. Probit analysis, 3rd edn Cambridge University Press, p. 333, London, United Kingdom.

  • Gao, C. F., Ma, S. Z., Shan, C. H., & Wu, S. F. (2014). Thiamethoxam resistance selected in the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae): Cross-resistance patterns, possible biochemical mechanisms and fitness costs analysis. Pesticide Biochemistry and Physiology, 114, 90–96.

    Article  CAS  Google Scholar 

  • Goindin, D., Delannay, C., Gelasse, A., Ramdini, C., Gaude, T., Faucon, F., David, J. P., Gustave, J., Vega-Rua, A., & Fouque, F. (2017). Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infectious Diseases of Poverty, 6(1), 38.

    Article  Google Scholar 

  • Grant, D. F., & Matsumura, F. (1989). Glutathione S-transferase 1 and 2 in susceptible and insecticide resistant Aedes aegypti. Pesticide Biochemistry and Physiology, 33(2), 132–143.

    Article  CAS  Google Scholar 

  • Gubler, D. J., & Clark, G. G. (1996). Community involvement in the control of Aedes aegypti. Acta Tropica, 61(2), 169–179.

    Article  CAS  Google Scholar 

  • Hamid, P. H., Prastowo, J., Widyasari, A., Taubert, A., & Hermosilla, C. (2017). Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali. Indonesia. Parasites & Vectors, 10(1), 283.

    Article  Google Scholar 

  • Hammond, S. N., Gordon, A. L., Lugo, E. D. C., Moreno, G., Kuan, G. M., López, M. M., López, J. D., Delgado, M. A., Valle, S. I., & Espinoza, P. M. (2007). Characterization of Aedes aegypti (Diptera: Culcidae) production sites in urban Nicaragua. Journal of Medical Entomology, 44(5), 851–860.

    Article  Google Scholar 

  • Hemingway, J., & Ranson, H. (2000). Insecticide resistance in insect vectors of human disease. Annual Review of Entomology, 45(1), 371–391.

    Article  CAS  Google Scholar 

  • Ishak, I. H., Jaal, Z., Ranson, H., & Wondji, C. S. (2015). Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasites & Vectors, 8(1), 181.

    Article  Google Scholar 

  • Jahan, N., & Shahid, A. (2013). Evaluation of resistance against deltamethrin and cypermethrin in dengue vector from Lahore, Pakistan. Journal of Animal and Plant Sciences, 23(5), 1321–1326.

    CAS  Google Scholar 

  • Jentes, E. S., Poumerol, G., Gershman, M. D., Hill, D. R., Lemarchand, J., Lewis, R. F., Staples, J. E., Tomori, O., Wilder-Smith, A., & Monath, T. P. (2011). The revised global yellow fever risk map and recommendations for vaccination, 2010: Consensus of the Informal WHO Working Group on Geographic Risk for Yellow Fever. The Lancet Infectious Diseases, 11(8), 622–632.

    Article  Google Scholar 

  • Karunamoorthi, K., Mohammed, M., & Wassie, F. (2012). Knowledge and practices of farmers with reference to pesticide management: Implications on human health. Archives of Environmental & Occupational Health, 67(2), 109–116.

    Article  CAS  Google Scholar 

  • Kaufman, P. E., Nunez, S. C., Geden, C. J., & Scharf, M. E. (2010). Selection for resistance to imidacloprid in the house fly (Diptera: Muscidae). Journal of Economic Entomology, 103(5), 1937–1942.

    Article  CAS  Google Scholar 

  • Kavi, L. A., Kaufman, P. E., & Scott, J. G. (2014). Genetics and mechanisms of imidacloprid resistance in house flies. Pesticide Biochemistry and Physiology, 109, 64–69.

    Article  CAS  Google Scholar 

  • Khan, H., Abbas, N., Shad, S. A., & Afzal, M. B. S. (2014). Genetics and realized heritability of resistance to imidacloprid in a poultry population of house fly, Musca domestica L. (Diptera: Muscidae) from Pakistan. Pesticide Biochemistry and Physiology, 114, 38–43.

    Article  CAS  Google Scholar 

  • Khan, H. A. A., Akram, W., Shehzad, K., & Shaalan, E. A. (2011). First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasites & Vectors, 4(1), 146.

    Article  CAS  Google Scholar 

  • Kristensen, M. (2005). Glutathione S-transferase and insecticide resistance in laboratory strains and field populations of Musca domestica. Journal of Economic Entomology, 98(4), 1341–1348.

    Article  CAS  Google Scholar 

  • Le Goff, G., Hamon, A., Bergé, J. B., & Amichot, M. (2005). Resistance to fipronil in Drosophila simulans: Influence of two point mutations in the RDL GABA receptor subunit. Journal of Neurochemistry, 92(6), 1295–1305.

    Article  Google Scholar 

  • Li, A., Yang, Y., Wu, S., Li, C., & Wu, Y. (2006). Investigation of resistance mechanisms to fipronil in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 99(3), 914–919.

    Article  CAS  Google Scholar 

  • Litchfield, J. J., & Wilcoxon, F. (1949). A simplified method of evaluating dose-effect experiments. The Journal of Pharmacology and Experimental Therapeutics, 96(2), 99–113.

    CAS  Google Scholar 

  • Maciel-de-Freitas, R., Avendanho, F.C., Santos, R., Sylvestre, G., Araújo, S.C., Lima, J.B.P., Martins, A.J., Coelho, G.E., & Valle, D. (2014) Undesirable consequences of insecticide resistance following Aedes aegypti control activities due to a dengue outbreak. PloS One, 9(3), e92424.

  • Muthusamy, R., & Shivakumar, M. (2015) Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos from three districts of Tamil Nadu, India. Journal of Vector Borne Diseaes, 52(2), 159–165.

  • Paris, M., David, J. P., & Despres, L. (2011). Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti. Ecotoxicology, 20(6), 1184–1194.

    Article  CAS  Google Scholar 

  • Philbert, A., & Ijumba, J. N. (2013). Preferred breeding habitats of Aedes aegypti (Diptera Culicidae) mosquito and its public health implications in Dares Salaam. The Journal of Environmental Management, 4(10), 344–351.

    Google Scholar 

  • Pialoux, G., Gaüzère, B. A., Jauréguiberry, S., & Strobel, M. (2007). Chikungunya, an epidemic arbovirosis. The Lancet Infectious Diseases, 7(5), 319–327.

    Article  Google Scholar 

  • POLO-Plus P (2005) for Windows, Version 2.0. LeOra Software, Petaluma, CA.

  • Ponce-García, G., Del Río-Galvan, S., Barrera, R., Saavedra-Rodriguez, K., Villanueva-Segura, K., Felix, G., Amador, M., & Flores, A. E. (2016). Knockdown resistance mutations in Aedes aegypti (Diptera: Culicidae) From Puerto Rico. Journal of Medical Entomology, 53(6), 1410–1414.

    Article  Google Scholar 

  • Pridgeon, J. W., Pereira, R. M., Becnel, J. J., Allan, S. A., Clark, G. G., & Linthicum, K. J. (2008). Susceptibility of Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say to 19 pesticides with different modes of action. Journal of Medical Entomology, 45(1), 82–87.

    CAS  Google Scholar 

  • Ranson, H., Burhani, J., Lumjuan, N., & Black, IV W.C. (2010). Insecticide resistance in dengue vectors. TropIKA net [online], 1(1),1:12.

  • Riaz, M. A., Chandor-Proust, A., Dauphin-Villemant, C., Poupardin, R., Jones, C. M., Strode, C., Régent-Kloeckner, M., David, J. P., & Reynaud, S. (2013). Molecular mechanisms associated with increased tolerance to the neonicotinoid insecticide imidacloprid in the dengue vector Aedes aegypti. Aquatic Toxicology, 126, 326–337.

    Article  CAS  Google Scholar 

  • Saavedra Rodriguez, K., Campbell, C. L., Lenhart, A., Penilla, P., Lozano Fuentes, S., & Black, W. C., IV. (2019). Exome wide association of deltamethrin resistance in Aedes aegypti from Mexico. Insect Molecular Biology, 28(5), 591–604.

    Article  CAS  Google Scholar 

  • Sayyed, A. H., & Wright, D. J. (2004). Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): Inheritance and number of genes involved. Journal of Economic Entomology, 97(6), 2043–2050.

    Article  CAS  Google Scholar 

  • Scholte, E.J., Takken, W., & Knols, B.G. (2007) Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Tropica, 102(3),151–158.

  • Scott, J. G., & Georghiou, G. P. (1986). Mechanisms responsible for high levels of permethrin resistance in the house fly. Pesticide Science, 17(3), 195–206.

    Article  CAS  Google Scholar 

  • Serebrov, V., Gerber, O., Malyarchuk, A., Martemyanov, V., Alekseev, A., & Glupov, V. (2006). Effect of entomopathogenic fungi on detoxification enzyme activity in greater wax moth Galleria mellonella L.(Lepidoptera, Pyralidae) and role of detoxification enzymes in development of insect resistance to entomopathogenic fungi. BioIogy Bulletin, 33(6), 581.

  • Shah, R. M., Alam, M., Ahmad, D., Waqas, M., Ali, Q., Binyameen, M., & Shad, S. A. (2016). Toxicity of 25 synthetic insecticides to the field population of Culex quinquefasciatus Say. Parasitology Research, 115(11), 4345–4351.

    Article  Google Scholar 

  • Smith, L. B., Kasai, S., & Scott, J. G. (2016). Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology, 133, 1–12.

    Article  CAS  Google Scholar 

  • Stenhouse, S. A., Plernsub, S., Yanola, J., Lumjuan, N., Dantrakool, A., Choochote, W., & Somboon, P. (2013). Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand. Parasites & Vectors, 6(1), 1–10.

    Article  Google Scholar 

  • Tang, J., Li, J., Shao, Y., Yang, B., & Liu, Z. (2010). Fipronil resistance in the whitebacked planthopper (Sogatella furcifera): Possible resistance mechanisms and cross resistance. Pest Management Science, 66(2), 121–125.

    Article  CAS  Google Scholar 

  • Torres-Vila, L.M., Rodrı́guez-Molina, M.C., Lacasa-Plasencia, A., Bielza-Lino, P., & Rodrı́guez del Rincon, A. (2002). Pyrethroid resistance of Helicoverpa armigera in Spain: Current status and agroecological perspective. Agriculture, Ecosystem & Environment, 93 55 66.

  • Vazquez-Prokopec, G. M., Medina-Barreiro, A., Che-Mendoza, A., Dzul-Manzanilla, F., Correa-Morales, F., Guillermo-May, G., & Manrique-Saide, P. (2017). Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico. PLoS Neglected Tropical Diseases, 11(6), e0005656.

  • Vontas, J., Kioulos, E., Pavlidi, N., Morou, E., Della, T. A., & Ranson, H. (2012). Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pesticide Biochemistry and Physiology, 104(2), 126–131.

    Article  CAS  Google Scholar 

  • Wang, K. Y., Liu, T. X., Yu, C. H., Jiang, X. Y., & Yi, M. Q. (2002). Resistance of Aphis gossypii (Homoptera: Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. Journal of Economic Entomology, 95(2), 407–413.

    Article  CAS  Google Scholar 

  • Wang, Y. H., Liu, X. G., Zhu, C. Y., Wu, G. S., Li, Y. S., Chen, M. W., & Shen, L. J. (2009). Inheritance mode and realized heritability of resistance to imidacloprid in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Pest Management Science, 65(6), 629–634.

    Article  CAS  Google Scholar 

  • World Health Organization (2016). Monitoring and managing insecticide resistance in Aedes mosquito populations: Interim guidance for entomologists.

  • Xue, R. D., Pridgeon, J. W., Becnel, J. J., & Ali, A. (2009). Fipronil as a larvicide against the container-inhabiting mosquito, Aedes albopictus. Journal of American Mosquito Control Association, 25(2), 224–227.

    Article  CAS  Google Scholar 

  • Zibaee, A., Bandani, A. R., & Tork, M. (2009). Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae). Biocontrol Science and Technology, 19(5), 485–498.

    Article  Google Scholar 

  • Zoh, M. G., Gaude, T., Prud'homme, S. M., Riaz, M. A., David, J. P., & Reynaud, S. (2021). Molecular bases of P450-mediated resistance to the neonicotinoid insecticide imidacloprid in the mosquito Ae. aegypti. Aquatic Toxicology, 236, 105860.

Download references

Acknowledgements

The authors are thankful to Prof. Dr. José Eduardo Serrão, Department of General Biology, Federal University of Viçosa, Brazil, for sparing his time to check manuscript for improvement of English language and students who helped in mosquito collection.

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Waqas Sumra: Methodology, Analysis, Investigation, Data curation, Writing — original draft writing. Shoaib Freed: Conceptualization, Methodology, Validation, analysis, Supervision, Writing — original draft, Writing — review and editing. Muhammad Sheraz Shah: Methodology, Data curation, Writing — review and editing. Muhammad Zeeshan Nazar: Methodology, Data curation, Writing. Sikandar Hussain: Methodology, Writing — review and editing. Afifa Naeem: Data analysis, Writing — review and editing.

Corresponding author

Correspondence to Shoaib Freed.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Field collected population of Aedes aegypti developed 118, 77, 372-fold resistance ratio to Deltamethrin, fiproniland imidacloprid from G1-G10 after laboratory selection.

2. The detoxification enzymes activities were increased in all generations.

3. The increased activities of alkaline and acid phosphatases are the major cause of resistance development in A. egypti to the tested insecticides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumra, M.W., Freed, S., Shah, M.S. et al. Biochemical characterization of Aedes aegypti (Linnaeus) (Diptera: Culicidae) resistance to deltamethrin, fipronil, and imidacloprid. Environ Monit Assess 193, 665 (2021). https://doi.org/10.1007/s10661-021-09465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09465-5

Keywords

Navigation