Skip to main content

Advertisement

Log in

Impact Behavior and Energy Absorption of Composite Tubes Made from Fiber Fabrics or Prepregs

  • Published:
Mechanics of Composite Materials Aims and scope

The impact behavior and energy absorption of two types of composite tubes, fabricated from carbon fabrics by the resin transfer molding and from carbon prepregs by the lay-up method, were investigated experimentally and numerically. In impact tests, outward-splaying crush caps with different fillet radii were used. Different types of crushing behavior of the tubes were simulated by the finite-element analysis, including a progressive failure function and considering the possibility of delamination. A comparison with experimental results confirmed that, the finite-element analysis was able to well predict the crushing behavior of the composite tubes, showing that the specific energy absorption of the prepreg composite tubes was always about 20% lower than that of the braided ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. C. Bisagni, “Experimental investigation of the collapse modes and energy absorption characteristics of composite tubes,” Int. J. Crashworthiness, 14, 365-378 (2009).

    Article  Google Scholar 

  2. C. Reuter, K. H. Sauerland, and T. Tröster, “Experimental and numerical crushing analysis of circular CFRP tubes under axial impact loading,” Compos. Struct., 154, 33-44 (2017).

    Article  Google Scholar 

  3. M. D. White, N. Jones, and W. Abramowicz, “A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections,” Int. J. Mech. Sci., 41, 209-233 (1999).

    Article  Google Scholar 

  4. W. Abramowicz and N. Jones, “Dynamic progressive buckling of circular and square tubes,” Int. J. Impact Eng., 4, 243-270 (1986).

    Article  Google Scholar 

  5. C. Reuter and T. Tröster, “Crashworthiness and numerical simulation of hybrid aluminium CFRP tubes under axial impact,” Thin-Wall Struct., 117, 1-9 (2017).

    Article  Google Scholar 

  6. D. Siromani, G. Henderson, D. Mikita, L. Mirarchi, R. Park, J. Smolko, J. Awerbuch, and T. M. Tan, “An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression,” Compos. Part A-Appl. S., 64, 25-35 (2014).

    Article  CAS  Google Scholar 

  7. J. Huang and X. Wang, “Numerical and experimental investigations on the axial crushing response of composite tubes,” Compos. Struct., 91, 222-228 (2009).

    Article  Google Scholar 

  8. C. J. McGrefor, R. Vaxiri, A. Poursartip, and X. Xiao, “Simulation of progressive damage development in braided composite tubes under axial compression,” Compos. Part A-Appl. S., 38, 2247-2259 (2007).

    Article  Google Scholar 

  9. Q. Liu, H. Xing, Y. Ju, Z. Qu, and Q. Li, “Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes,” Compos. Struct., 117, 1-11 (2014).

    Article  Google Scholar 

  10. C. J. McGrefor, R. Vaxiri, and X. Xiao, “Finite element modelling of the progressive crushing of braided composite tubes under axial impact,” Int. J. Impact Eng., 37, 662-672 (2010).

    Article  Google Scholar 

  11. T. Hou, G. M. K. Pearce, B. G. Prusty, D. W. Kelly, and R. S. Thomson, “Pressurised composite tubes as variable load energy absorbers,” Compos. Struct., 120, 346-357 (2015).

    Article  Google Scholar 

  12. Q. Liu, Z. Qu, Z. Mo, Q. Li, and D. Qu, “Experimental investigation into dynamic axial impact responses of double hat shaped CFRP tubes,” Compos. Part B-Eng., 79, 494-504 (2015).

    Article  CAS  Google Scholar 

  13. S. Ochelski and P. Gotowicki, “Experimental assessment of energy absorption capability of carbon-epoxy and glassepoxy composites,” Compos. Struct., 87, 215-224 (2009).

    Article  Google Scholar 

  14. S. Boria, A. Scattina, and G. Belingardi, “Axial energy absorption of CFRP truncated cones,” Compos. Struct., 130, 18-28 (2015).

    Article  Google Scholar 

  15. M. M. Shokrieh, H. Tozandehjani, and M. J. Omidi, “Effect of fiber orientation and cross section of composite tubes on their energy absorption ability in axial dynamic loading,” Mech. Compos. Mater., 45, 567-576 (2009).

    Article  CAS  Google Scholar 

  16. H. L. Mou, J. Xie, X. Su, and Z. Y. Feng, “Crashworthiness experiment and simulation analysis of composite thinwalled circular tubes under axial crushing,” Mech. Compos. Mater., 55, 121-134 (2019).

    Article  Google Scholar 

  17. D. Siromani, J. Awerbuch, and T. M. Tan, “Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression,” Compos. Part B-Eng., 64, 50-58 (2014).

    Article  CAS  Google Scholar 

  18. Y. Tong and Y. Xu, “Improvement of crash energy absorption of 2D braided composite tubes through an innovative chamfer external triggers,” Int. J. Impact Eng., 111, 11-20 (2017).

    Article  Google Scholar 

  19. D. Siromani, J. Awerbuch, and T. M. Tan, “Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression,” Composites: Part B-Eng., 64, 50-58 (2014).

    Article  CAS  Google Scholar 

  20. C. Reuter, K. H. Sauerlan, and T. Troster, “Experimental and numerical crushing analysis of circular CFRP tubes under axial impact loading,” Compos. Struct., 174, 33-44 (2017).

    Article  Google Scholar 

  21. J. Sliseris, L. Yan, and B. Kasal, “Numerical simulation and experimental verification of hollow and foam-filled flaxfabric-reinforced epoxy tubular energy absorbers subjected to crashing,” Mech. Compos. Mater., 53, 487-496 (2017).

    Article  Google Scholar 

  22. P. Paruka, W. A. Siswanto, M. A. Maleque, and M. K. M. Shah, “Crashworthy capacity of a hybridized epoxy-glass fiber aluminum columnar tube using repeated axial resistive force,” J. Mech. Sci. Technol., 29, 1941-1953 (2015).

    Article  Google Scholar 

  23. X. Xiao, M. E. Botkin, and N. L. Johnson, “Axial crush simulation of braided carbon tubes using MAT 58 in LS-DYNA,” Thin Wall. Struct., 47, 740-749 (2009).

    Article  Google Scholar 

  24. S. F. Hwang and Y. C. Chang, “Axial crushing behavior of braided carbon/polyurethane composite tubes,” Appl. Compos. Mater., 26, 1281-1297 (2019).

    Article  CAS  Google Scholar 

  25. S. F. Hwang and H. T. Liu, “Prediction of elastic constants of carbon fabric/polyurethane composites,” Solid State Phenom., 258, 233-236 (2017).

    Article  Google Scholar 

  26. F. K. Chang and K. Y. Chang, “A progressive damage model for laminated composites containing stress concentration,” J. Compos. Mater., 21, 834-855 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Hwang.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 4, pp. 645-658, July-August, 2021. Russian DOI: 10.22364/mkm.57.4.03.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S.F., Wu, C.Y. Impact Behavior and Energy Absorption of Composite Tubes Made from Fiber Fabrics or Prepregs. Mech Compos Mater 57, 449–458 (2021). https://doi.org/10.1007/s11029-021-09968-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09968-9

Keywords

Navigation