Skip to main content
Log in

Quasi-Static Penetration Behavior of Glass-Fiber-Reinforced Epoxy Nanocomposites

  • Published:
Mechanics of Composite Materials Aims and scope

An Author Correction to this article was published on 23 November 2021

This article has been updated

The effect of Al2O3 and B4C nanoparticles on the quasi-static penetration test (QSPT) and Charpy impact test of glass-fiber-reinforced polymer composite plates has been studied with the aim to clear up whether there is a correlation between results of these two tests. Punch shear tests on the plates were carried out. The data for the absorbed energy obtained from the Charpy impact test were feasible to predict whether fiber-reinforced polymer nanocomposites will give positive results in the QSPT or ballistic tests. The predominant damage mechanisms were delamination and fiber break during the QSPT. Addition of 1 wt.% Al2O3 nanoparticles to the composite increased its punch shear strength by 8.97%, but the addition of B4C nanoparticles raised its hardness. It was also found that neither Al2O3 nor B4C increased the amount of absorbed energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. M. Özen, G. Demircan, M. Kisa, and Z. Ilik, “Investigation of usability of waste textile fabrics in composites,” Emerg. Mater. Res., 9, No. 1, 1-6 (2020).

    Google Scholar 

  2. D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-reinforced polymer composites: Manufacturing, properties, and applications,” Polymers, 11, No. 10, 1667 (2019).

    Article  CAS  Google Scholar 

  3. F. A. Shishevan, H. Akbulut, and M. A. Mohtadi-Bonab, “Low velocity ımpact behavior of basalt fiber-reinforced polymer composites,” J. Mater. Eng. Perform, 26, No. 6, 2890-2900 (2017).

    Article  CAS  Google Scholar 

  4. W. L. Lai, H. Saeedipour, and K. L. Goh, “Mechanical properties of low-velocity ımpact damaged carbon fibre reinforced polymer laminates: Effects of drilling holes for resin-ınjection repair,” Compos. Struct., 235, 111806 (2020).

    Article  Google Scholar 

  5. J. Liu, H. Liu, C. Kaboglu, X. Kong, Y. Ding, H. Chai, B. R. K. Blackman, A. J. Kinloch, and J. P. Dear, “The ımpact performance of woven-fabric thermoplastic and thermoset composites subjected to high-velocity soft- and hard-ımpact loading,” Appl. Compos. Mater., 26, No. 5-6, 1389-1410 (2019).

    Article  CAS  Google Scholar 

  6. A. Shimamoto, R. Kubota, and K. Takayama, “High-velocity ımpact characteristic of carbon fiber reinforced plastic composite at low temperature,” J. Strain Anal. Eng. Des., 47, No. 7, 471-479 (2012).

    Article  Google Scholar 

  7. N. Domun, C. Kaboglu, K. R. Paton, J. P. Dear, J. Liu, B. R. K. Blackman, G. Liaghat, and H. Hadavinia, “Ballistic ımpact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices,” Composites, Part B., 167, 497-506 (2019).

    Article  CAS  Google Scholar 

  8. J. Naveen, M. Jawaid, E. S. Zainudin, M. T. H. Sultan, and R. Yahaya, “Evaluation of ballistic performance of hybrid kevlar®/cocos nucifera sheath reinforced epoxy composites,” J. Text. Inst., 110, No. 8, 1179-1189 (2019).

    Article  CAS  Google Scholar 

  9. Y. Li, W. Zhang, Z. Yang, J. Zhang, and S. Tao, “Low-velocity ımpact damage characterization of carbon fiber reinforced polymer (CFRP) using ınfrared thermography,” Infrared Phys. Technol., 76, 91-102 (2016).

    Article  CAS  Google Scholar 

  10. J. I. Margem, F. M. Margem, M. R. Margem, V. A. Gomes, and S. N. Monteiro, “Charpy ımpact tests in epoxy matrix composites reinforced with malva fibers,” In: The Minerals, Metals & Materials Society (eds) TMS 2014: 143rd Annual Meeting & Exhibition, 425-432 (2014).

  11. P. Wagner, “The dynamics of ımpact on composite structures,” Key Eng. Mater., 141, 671-694 (1997).

    Article  Google Scholar 

  12. M. A. Abtew, F. Boussu, P. Bruniaux, C. Loghin, and I. Cristian, “Ballistic ımpact mechanisms — A review on textiles and fibre-reinforced composites ımpact responses,” Compos. Struct., 223, 110966 (2019).

    Article  Google Scholar 

  13. A. Shahkaramı, E. Cepus, R. Vazırı, and A. Poursartıp, Material Responses to Ballistic Impact, Lightweight Ballistic Composites, Woodhead Publishing, New York, USA, 72-100 (2006).

  14. C. T. Sun and S. V. Potti, “A simple model to predict residual velocities of thick composite laminates subjected to high velocity ımpact,” Int. J. Impact Eng., 18, No. 3, 339-353 (1996).

    Article  Google Scholar 

  15. B. A. Gama and J. W. Gillespie, “Punch shear based penetration model of ballistic ımpact of thick-section composites,” Compos. Struct., 86, No. 4, 356-369 (2008).

    Article  Google Scholar 

  16. J. B. Jordan, C. J. Naito, and B. Z. Haque, “Quasi-static, low-velocity ımpact and ballistic ımpact behavior of plain weave E-glass/Phenolic Composites,” J. Compos. Mater., 48, No. 20, 2505-2516 (2014).

    Article  Google Scholar 

  17. B. Gu and X. Ding, “A refined quasi-microstructure model for finite element analysis of three-dimensional braided composites under ballistic penetration,” J. Compos. Mater., 39, No. 8, 685-710 (2005).

    Article  CAS  Google Scholar 

  18. S. T. Jenq, H. S. Jing, and C. Chung, “Predicting the ballistic limit for plain woven glass/epoxy composite laminate,” Int. J. Impact Eng., 15, No. 4, 451-464 (1994).

    Article  Google Scholar 

  19. W. Goldsmith, C. K. H. Dharan, and H. Chang, “Quasi-static and ballistic perforation of carbon fiber laminates,” Int. J. Solids Struct., 32, No. 1, 89-103 (1995).

    Article  Google Scholar 

  20. C. Lin and M. S. H. Fatt, “Perforation of composite plates and sandwich panels under quasi-static and projectile loading,” J. Compos. Mater., 40, No. 20, 1801-1840 (2006).

    Article  Google Scholar 

  21. M. Nagai and H. Miyairi, “The study on Charpy ımpact testing method of CFRP,” Adv. Compos. Mater., 3, No. 3, 177-190 (1994).

    Article  Google Scholar 

  22. G. Simeoli, L. Sorrentino, F. Touchard, D. Mellier, M. Oliviero, and P. Russo, “Comparison of falling dart and charpy ımpacts performances of compatibilized and not compatibilized polypropylene/woven glass fibres composites,” Composites, Part B., 165, 102-108 (2019).

  23. A. C. Pereira, S. N. Monteiro, F. S. de Assis, F. M. Margem, F. S. da Luz, and F. de O. Braga, “Charpy ımpact tenacity of epoxy matrix composites reinforced with aligned jute fibers,” J. Mater. Res. Technol., 6, No. 4, 312-316 (2017).

  24. G. O. Glória, F. M. Margem, C. G. D. Ribeiro, Y. M. de Moraes, R. B. da Cruz, F. de A. Silva, and S. N. Monteiro, “Charpy ımpact tests of epoxy composites reinforced with giant bamboo fibers,” Mater. Res., 18, 178-184 (2015).

  25. J. J. Andrew, S. M. Srinivasan, A. Arockiarajan, and H. N. Dhakal, “Parameters ınfluencing the ımpact response of fiber-reinforced polymer matrix composite materials: A critical review,” Compos. Struct., 224, 111007 (2019).

    Article  Google Scholar 

  26. N. A. Rahman, A. Hassan, R. Yahya, and R. A. Lafia-Araga, “Impact properties of glass-fiber/polypropylene composites: The ınfluence of fiber loading, specimen geometry and test temperature,” Fibers Polym., 14, No. 11, 1877-1885 (2013).

    Article  CAS  Google Scholar 

  27. L. F. C. Nascimento, S. N. Monteiro, L. H. L. Louro, F. S. da Luz, J. L. dos Santos, F. D. O. Braga, and R. L. S. B. Marçal, “Charpy ımpact test of epoxy composites reinforced with untreated and mercerized mallow fibers,” J. Mater. Res. Technol., 7, No. 4, 520-527 (2018).

    Article  CAS  Google Scholar 

  28. S. Safi, A. Zadhoush, and M. Ahmadi, “Flexural and Charpy ımpact behaviour of epoxy/glass fabric treated by nano-SiO2 and silane blend,” Plast. Rubber Compos., 46, No. 7, 314-321 (2017).

    Article  CAS  Google Scholar 

  29. A. Mohanty and V. K. Srivastava, “Effect of alumina nanoparticles on the enhancement of ımpact and flexural properties of the short glass/carbon fiber reinforced epoxy based composites,” Fibers Polym., 16, No. 1, 188-195 (2015).

    Article  CAS  Google Scholar 

  30. Ö. Y. Bozkurt, Ö. Özbek, and A. R. Abdo, “The effects of nanosilica on Charpy ımpact behavior of glass/epoxy fiber reinforced composite laminates,” Period. Eng. Nat. Sci., 5, No. 3, 322-327 (2017).

    Google Scholar 

  31. A. Afrouzian, H. M. Aleni, G. Liaghat, and H. Ahmadi, “Effect of nano-particles on the tensile, flexural and perforation properties of the glass/epoxy composites,” J. Reinf. Plast. Compos., 36, No. 12, 900-916 (2017).

    Article  CAS  Google Scholar 

  32. M. H. Pol and G. H. Liaghat, “Studies on the mechanical properties of composites reinforced with nanoparticles,” Polym. Compos., 38, No. 1, 205-212 (2017).

    Article  CAS  Google Scholar 

  33. S. Halder, P. K. Ghosh, M. S. Goyat, and S. Ray, “Ultrasonic dual mode mixing and ıts effect on tensile properties of SiO2-epoxy nanocomposite,” J. Adhes. Sci. Technol., 27, No. 2, 111-124 (2013).

    Article  CAS  Google Scholar 

  34. P. K. Ghosh, K. Kumar, and N. Chaudhary, “Influence of ultrasonic dual mixing on thermal and tensile properties of MWCNTs-epoxy composite,” Composites, Part B., 77, 139-144 (2015).

  35. ASTM D6264 / D6264M-17, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer-Matrix Composite to a Concentrated Quasi-Static Indentation Force, ASTM International, West Conshohocken, PA, 2017, www.astm.org

  36. R. Yahaya, S. M. Sapuan, M. Jawaid, Z. Leman, and E. S. Zainudin, “Quasi-static penetration and ballistic properties of kenaf-aramid hybrid composites,” Mater. Des., 63, 775-782 (2014).

    Article  Google Scholar 

  37. Y. Sun, R. Burgueño, W. Wang, and I. Lee, “Modeling and simulation of the quasi-static compressive behavior of Al/Cu hybrid open-cell foams,” Int. J. Solids Struct., 54, 135-146 (2015).

    Article  CAS  Google Scholar 

  38. A. Rossoll, C. Berdin, P. Forget, C. Prioul, and B. Marini, “Mechanical aspects of the Charpy ımpact test,” Nucl. Eng. Des., 188, No. 2, 217-229 (1999).

    Article  CAS  Google Scholar 

  39. EN ISO 179-1, Plastics—Determination of Charpy impact properties, Part 1: Non-instrumented impact test,” 2010.

  40. M. R. Mansor, Z. Mustafa, S. H. S. M. Fadzullah, G. Omar, M. A. Salim, and M. Z. Akop, “Recent advances in polyethylene-based biocomposites,” Natural Fibre reinforced vinyl ester and vinyl polymer composites, Woodhead Publishing, New York, USA, pp. 71-96 (2018).

  41. J. R. Xiao, B. A. Gama, and J. W. Gillespie, “Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading,” Compos. Struct., 78, No. 2, 182-196 (2007).

    Article  Google Scholar 

  42. A. J. G. Fernandes, W. F. de Amorim Jr., W. B. Filho, I. P. Guedes, A. L. Silva, and W. L. Porto, “Behavior of fiberglass polymer composites under ballistic ımpact and quasi-static punch shear tests,” Mater. Sci. Forum, 881, 300-306 (2016).

    Article  Google Scholar 

  43. A. Fathy, A. Shaker, M. A. Hamid, and A. A. Megahed, “The effects of nano-silica/nano-alumina on fatigue behavior of glass fiber-reinforced epoxy composites,” Journal of Composite Materials, 51, 1667-1679 (2017).

    Article  CAS  Google Scholar 

  44. M. Bulut, A. Erkliğ, and E. Yeter, “Hybridization effects on quasi-static penetration resistance in fiber reinforced hybrid composite laminates,” Composites, Part B., 98, 9-22 (2016).

    Article  CAS  Google Scholar 

  45. K. E. Öksüz and Y. Şahin, “Microstructure and hardness characteristics of Al2O3-B4C particle-reinforced Cu matrix composites,” Acta Phys. Pol. A, 129, No. 4, 650-652 (2016).

    Article  Google Scholar 

  46. D. Rosato and D. Rosato, Desıgn Parameter, Plastics Engineered Product Design, Elsevier, New York, USA, 161-197 (2003).

  47. G. Demircan, M. Kisa, M. Ozen, and B. Aktas, “Surface-modified alumina nanoparticles-filled aramid fiber-reinforced epoxy nanocomposites: Preparation and mechanical properties,” Iran. Polym. J., 29, No. 3, 253-264 (2020).

    Article  CAS  Google Scholar 

  48. A. B. Abdul-hussein, F. A. Hashim, and T. R. Kadhim, “Effect of nano powder on mechanical and physical properties of glass fiber reinforced epoxy composite,” Al-Khwarizmi Eng. J., 12, No. 3, 72-79 (2016).

    Google Scholar 

  49. A. A. Megahed, M. A. Agwa, and M. Megahed, “Improvement of hardness and wear resistance of glass fiber-reinforced epoxy composites by the ıncorporation of silica/carbon hybrid nanofillers,” Polym. Plast. Technol. Eng., 57, No. 4, 251-259 (2018).

    Article  CAS  Google Scholar 

  50. G. Agarwal, A. Patnaik, and R. K. Sharma, “Thermo-mechanical properties and abrasive wear behavior of silicon carbide filled woven glass fiber composites,” Silicon, 6, No. 3, 155-168 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Demircan.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 4, pp. 721-738, July-August, 2021. Russian DOI: 10.22364/mkm.57.4.08.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demircan, G., Kisa, M., Ozen, M. et al. Quasi-Static Penetration Behavior of Glass-Fiber-Reinforced Epoxy Nanocomposites. Mech Compos Mater 57, 503–516 (2021). https://doi.org/10.1007/s11029-021-09973-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09973-y

Keywords

Navigation