Skip to main content
Log in

Dielectric behavior and AC conductivity mechanism of ZnCo2O4 ceramic nanoparticles as a function of frequency and temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, ZnCo2O4 nanoparticles were synthesized using the sol–gel method. Structural and morphological properties of the sample were analyzed using X-ray diffraction and scanning electron microscope. Cell volume, lattice parameter, dislocation density, and microstrain were calculated using the Debye Scherrer and Williamson Hall method. The temperature and frequency dependence of AC conductivity and dielectric properties of ZnCo2O4 in a pellet form were analyzed in 3 kHz–1.5 MHz frequency range and 300–500 K temperature range. To determine AC conductivity and dielectric characteristics in more detail, they were divided into three temperature groups as zone I (300–340 K), zone II (360–400 K), and zone III (420–500 K). It is observed that each zone exhibits different behaviors. AC conductivity mechanisms of the sample was explained using correlated barrier hopping, overlapping large-polaron tunnelling, and non-overlapping small polaron tunnelling models for zone I, II, and III, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Guo, C. Chen, Y. Zhang, Y. Xu, H. Pang, Energy Storage Mater. 23, 439 (2019)

    Article  Google Scholar 

  2. Y. Wang, X. Zhu, D. Liu, H. Tang, G. Luo, K. Tu, Z. Xie, J Appl Electrochem. 49, 1103 (2019)

  3. N. Devillers, S. Jemei, M.C. Péra, D. Bienaimé, F. Gustin, J. Power Sources 246, 596 (2014)

    Article  CAS  Google Scholar 

  4. N. Tiwari, S. Kadam, S. Kulkarni, Mater. Lett. 298, 130039 (2021)

    Article  CAS  Google Scholar 

  5. M. Sufyan, A. Jabbar, S. Asim, S. Shoaib, A. Shah, T. Najam, S. Hussain, M. Faizan, Z. Zhao, W. Mai, J. Energy Storage 31, 101602 (2020)

    Article  Google Scholar 

  6. M. Silambarasan, P.S. Ramesh, D. Geetha, K. Ravikumar, H. Elhosiny Ali, H. Algarni, P. Soundhirarajan, K. V. Chandekar, Mohd. Shkir, J. Inorg. Organomet. Polym. Mater. (2021). https://doi.org/10.1007/s10904-021-02077-z

  7. J. Bao, Z. Wang, W. Liu, L. Xu, F. Lei, J. Xie, Y. Zhao, Y. Huang, M. Guan, H. Li, J. Alloys Compd. 764, 565 (2018)

    Article  CAS  Google Scholar 

  8. C. Zhang, Y. Pan, C. Ouyang, X. Li, X. Quan, Z. Hong, M. Zhi, ChemistrySelect. 6, 1685 (2021)

  9. H.Y. Chen, P.C. Chen, Appl. Surf. Sci. 505, 144460 (2020)

    Article  CAS  Google Scholar 

  10. Y. Yang, Z. Zhang, J. Gao, D. Pan, B. Yuan, X. Guo, G. Huang, J. Alloys Compd. 726, 1286 (2017)

    Article  CAS  Google Scholar 

  11. J.P. Morán-Lázaro, F. López-Urías, E. Muñoz-Sandoval, O. Blanco-Alonso, M. Sanchez-Tizapa, A. Carreon-Alvarez, H. Guillén-Bonilla, M. de la Olvera-Amador, A. Guillén-Bonilla, V.M. Rodríguez-Betancourtt, Nanostruct. Mater. ed. by Mohindar Singh Seehra, (IntechOpen, Rijeka, 2017), p. 153

  12. N. Zhang, Y. Lu, Y. Fan, J. Zhou, X. Li, S. Adimi, C. Liu, S. Ruan, Sensors Actuators B. Chem. 315, 128118 (2020)

    Article  CAS  Google Scholar 

  13. X. Li, Y. Zhang, Y. Cheng, X. Chen, W. Tan, Ceram. Int. 47, 9214 (2021)

    Article  CAS  Google Scholar 

  14. Y. Sharma, N. Sharma, G.V. Subba Rao, B.V.R. Chowdari, Adv. Funct. Mater. 17, 2855 (2007)

    Article  CAS  Google Scholar 

  15. M.H. Jung, Appl. Surf. Sci. 427, 293 (2018)

    Article  CAS  Google Scholar 

  16. J. Chen, J. Zhan, E. Lu, Y. Wan, Z. Jin, H. Qi, Mater. Lett. 220, 66 (2018)

    Article  CAS  Google Scholar 

  17. L. Merabet, K. Rida, N. Boukmouche, Ceram. Int. 44, 11265 (2018)

    Article  CAS  Google Scholar 

  18. K. Karthikeyan, D. Kalpana, N.G. Renganathan, Ionics (Kiel). 15, 107 (2009)

    Article  CAS  Google Scholar 

  19. B. Liu, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 12, 3005 (2012)

    Article  CAS  Google Scholar 

  20. H. Yu, H. Zhao, Y. Wu, B. Chen, J. Sun, J. Phys. Chem. Solids 140, 109385 (2020)

    Article  CAS  Google Scholar 

  21. N. Joshi, L.F. da Silva, H.S. Jadhav, F.M. Shimizu, P.H. Suman, J.C. M’Peko, M.O. Orlandi, J.G. Seo, V.R. Mastelaro, O.N. Oliveira, Sens. Actuators B Chem. 257, 906 (2018)

    Article  CAS  Google Scholar 

  22. C.R. Mariappan, R. Kumar, G. Vijaya, Prakash, RSC Adv. 5, 26843 (2015)

    Article  CAS  Google Scholar 

  23. J. Pan, F. Wang, L. Zhang, S. Song, H. Zhang, Inorg. Chem. Front. 6, 220 (2019)

    Article  CAS  Google Scholar 

  24. J. Zhu, D. Song, T. Pu, J. Li, B. Huang, W. Wang, C. Zhao, L. Xie, L. Chen, Chem. Eng. J. 336, 679 (2018)

    Article  CAS  Google Scholar 

  25. S. Wang, J. Pu, Y. Tong, Y. Cheng, Y. Gao, Z. Wang, J. Mater. Chem. A 2, 5434 (2014)

    Article  CAS  Google Scholar 

  26. E. Awaltanova, A. Amri, N. Mondinos, M. Altarawneh, T.S.Y. Moh, H. Widjaja, L.S. Chuah, H.L. Lee, C. Yang-Yin, M.M. Rahman, I. Amri, I. Iwantono, Z.T. Jiang, J. Sol-Gel. Sci. Technol. 90, 450 (2019)

    Article  CAS  Google Scholar 

  27. T. Huang, C. Zhao, R. Zheng, Y. Zhang, Z. Hu, Ionics (Kiel). 21, 3109 (2015)

    Article  CAS  Google Scholar 

  28. W. Wang, J. Mater. Sci. Mater. Electron. 32, 16662 (2021)

  29. J. Bhagwan, S. Khaja Hussain, J.S. Yu, J. Alloys Compd. 815, 152456 (2020)

    Article  CAS  Google Scholar 

  30. X. Wei, D. Chen, W. Tang, Mater. Chem. Phys. 103, 54 (2007)

    Article  CAS  Google Scholar 

  31. S. Arya, P. Mahajan, S. Mahajan, A. Khosla, R. Datt, V. Gupta, S.-J. Young, S.K. Oruganti, ECS J. Solid State Sci. Technol. 10, 023002 (2021)

    Article  CAS  Google Scholar 

  32. M. Baskey, R. Maiti, S. Kumar, Saha, D. Chakravorty, J. Appl. Phys. 115, 2 (2014)

    Article  Google Scholar 

  33. H. Chen, J. Wang, X. Han, F. Liao, Y. Zhang, L. Gao, C. Xu, Ceram. Int. 45, 8577 (2019)

    Article  CAS  Google Scholar 

  34. Y. Shang, T. Xie, C. Ma, L. Su, Y. Gai, J. Liu, L. Gong, Electrochim. Acta 286, 103 (2018)

    Article  CAS  Google Scholar 

  35. L. Hu, B. Qu, C. Li, Y. Chen, L. Mei, D. Lei, L. Chen, Q. Li, T. Wang, J. Mater. Chem. A 1, 5596 (2013)

    Article  CAS  Google Scholar 

  36. R.A. Sutar, L. Kumari, M.V. Murugendrappa, Ceram. Int. 46, 22492 (2020)

    Article  CAS  Google Scholar 

  37. L.S. Lobo, A. Ruban Kumar, J. Non. Cryst. Solids 505, 301 (2019)

    Article  CAS  Google Scholar 

  38. H.E. Swanson, H.F. Mcmurdie, M.C. Morris, H. Evans, B. Paretzkin, Stand. X-Ray Diff. Powder Patterns. (Nat. Bureau Standards, Washington, 1972), p. 60

  39. R. Rai, T. Triloki, B.K. Singh, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)

    Article  CAS  Google Scholar 

  40. G. Umapathy, G. Senguttuvan, L. John Berchmans, V. Sivakumar, J. Mater. Sci. Mater. Electron. 27, 7062 (2016)

    Article  CAS  Google Scholar 

  41. R.K. Bhuyan, R.K. Mohapatra, G. Nath, B.K. Sahoo, D. Das, D. Pamu, J. Mater. Sci. Mater. Electron. 31, 628 (2020)

    Article  CAS  Google Scholar 

  42. Ş Çavdar, H. Koralay, N. Tuǧluoǧlu, A. Günen, Supercond. Sci. Technol. 18, 1204 (2005)

    Article  Google Scholar 

  43. T.W. Dakin, IEEE Electr. Insul. Mag. 22, 11 (2006)

    Article  Google Scholar 

  44. A.M. Badr, H.A. Elshaikh, I.M. Ashraf, J. Mod. Phys. 02, 12 (2011)

    Article  CAS  Google Scholar 

  45. J. Kolte, P.H. Salame, A.S. Daryapurkar, P. Gopalan, AIP Adv. 5, 0 (2015)

    Article  CAS  Google Scholar 

  46. A.A. Attia, M.A.M. Seyam, S.S. Nemr, J. Mater. Sci. Mater. Electron. 29, 7325 (2018)

    Article  CAS  Google Scholar 

  47. M. Ben Bechir, K. Karoui, M. Tabellout, K. Guidara, A. Ben Rhaiem, J. Alloys Compd. 588, 551 (2014)

    Article  CAS  Google Scholar 

  48. S.R. Elliott, Philos. Mag. 36, 1291 (1977)

    Article  CAS  Google Scholar 

  49. S.R. Elliott, Philos. Mag. B Phys. Condens. Matter. Stat. Mech. Electron. Opt. Magn. Prop. 37, 553 (1978)

    CAS  Google Scholar 

  50. Y. Ben Taher, A. Oueslati, N.K. Maaloul, K. Khirouni, M. Gargouri, Appl. Phys. A 120, 1537 (2015)

    Article  CAS  Google Scholar 

  51. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  CAS  Google Scholar 

  52. M. Makram, H. Mahmoud, B. Louati, F. Hlel, K. Guidara, Ionics (Kiel). 16, 655 (2010)

    Article  CAS  Google Scholar 

  53. S. Patel, L. Kodumudi, Venkataraman, H. Yadav, J. Korean Ceram. Soc. 58, 337 (2021)

    Article  CAS  Google Scholar 

  54. P. Oruç, N. Turan, Y. Demirölmez, A. Seçkin, Ş. Çavdar, H. Koralay, N. Tuğluoğlu, J. Mater. Sci. Mater. Electron. 32, 15837 (2021)

  55. M. Coşkun, A.O. Polat, F.M. Coşkun, Z. Durmuş, C.M. Caglar, A. Türüt, RSC Adv. 8, 4634 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Dr. Selim Acar (Gazi University) for measurement of the sample.

Author information

Authors and Affiliations

Authors

Contributions

NT: Investigation, experiment, formal analysis, visualization, writing—original draft, writing-review & editing.

Corresponding author

Correspondence to Neslihan Turan.

Ethics declarations

Conflict of interest

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, N. Dielectric behavior and AC conductivity mechanism of ZnCo2O4 ceramic nanoparticles as a function of frequency and temperature. J Mater Sci: Mater Electron 32, 25084–25093 (2021). https://doi.org/10.1007/s10854-021-06964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06964-6

Navigation