Skip to main content
Log in

Nucleation layer temperature effect on AlN epitaxial layers grown by metalorganic vapour phase epitaxy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

AlN samples have been grown on sapphire substrate using nucleation layers (NLs) having different growth temperatures. The growth temperature of the NL has been varied over a wide range of temperatures highlight the effects on the quality of the AlN epilayer. The AlN samples have been characterized by high-resolution X-ray diffraction (HRXRD), atomic force microscope (AFM), Raman scattering spectrometer, and spectrophotometer. The obtained results demonstrate the temperature of NL has a direct effect on the quality of the AlN sample and occurs major differences in the quality of structure, surface morphology, and amount of strain in the AlN epilayers. Based on HRXRD measurement results, when the growth temperature of AlN NL is raised to 1075 °C, the crystal quality has improved owing to both the density of AlN nucleation islands reduction and the grain size outgrow. However, continuing to increase the growth temperature of the AlN NL layer begins to degrade the quality. In addition, the findings obtained from the Raman measurement demonstrates that the tensile stress can be control through NL growth temperature. Therefore, as can be seen from the characterization results, the growth temperature of AlN NL is important to obtain an AlN sample with high quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.B. Miklos, C. Remby, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Water Res. 118, 131 (2018)

    Google Scholar 

  2. S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Nat. Photonics 3, 180 (2011)

    Google Scholar 

  3. C.L. Tsai, W.C. Wu, Materials 7, 5 (2014)

    Google Scholar 

  4. M.R. Luettgen, J.H. Shapiro, D.M. Reilly, J. Opt. Soc. Am. 8, 12 (1991)

    Google Scholar 

  5. D. Li, K. Jiang, X. Sun, C. Guo, Adv. Opt. Photonics 10, 1 (2018)

    Google Scholar 

  6. I. Demir, Y. Kocak, A.E. Kasapoglu, M. Razeghi, E. Gur, S. Elagoz, Semicond. Sci. Technol. 34, 075028 (2019)

    CAS  Google Scholar 

  7. H.Y. Shih, W.H. Lee, W.C. Kao, Y.C. Chuang, R.M. Lin, H.C. Lin, M. Shiojiri, M.J. Chen, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  8. X. Sun, D. Li, Y. Chen, H. Song, H. Jiang, Z. Li, G. Miao, Z. Zhang, CrystEngComm 15, 6066 (2013)

    CAS  Google Scholar 

  9. M.N.A. Rahman, A.F. Sulaiman, M.I.M.A. Khudus, K. Allif, N.A. Talik, S.H. Basri, A. Shuhaimi, Int. J. Appl. Phys. 58, SC1037 (2019)

    CAS  Google Scholar 

  10. Y. Ohba, H. Ako, Jpn. J. Appl. Phys. 35, 8B (1996)

    Google Scholar 

  11. H. Wang, S.L. Li, H. Xiong, Z.H. Wu, J.N. Dai, Y. Tian, Y.-Y. Fang, C.Q. Chen, J. Electron. Mater. 3, 41 (2012)

    Google Scholar 

  12. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986)

    CAS  Google Scholar 

  13. S. Nakamura, Jpn. J. Appl. Phys. 30, 1705 (1991)

    CAS  Google Scholar 

  14. T.Y. Wang, J.H. Liang, G.W. Fua, D.S. Wuu, CrystEngComm 18, 47 (2016)

    Google Scholar 

  15. M. Imura, K. Nakano, T. Kitano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, K. Shimono, T. Noro, T. Takagi, A. Bandoh, Phys. Status Solidi A 203, 1626 (2006)

    CAS  Google Scholar 

  16. M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, A. Bandoh, Jpn. J. Appl. Phys. 46, 1458 (2007)

    CAS  Google Scholar 

  17. W.X. Lan, Z.D. Gang, Y. Hui, L.J. Wu, Chin. Phys. Lett. 24, 774 (2007)

    Google Scholar 

  18. A.A. Allerman, M.J. Crawford, A.J. Fischer, K.H.A. Bogart, S.R. Lee, D.M. Follstaedt, P.P. Provencio, D.D. Koleske, J. Cryst. Growth 272, 227 (2004)

    CAS  Google Scholar 

  19. I. Demir, Y. Robin, R. McClintock, S. Elagoz, K. Zekentes, M. Razeghi, Phys. Status Solidi A 214, 1600363 (2017)

    Google Scholar 

  20. H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, N. Kamata, Appl. Phys. Lett. 91, 071901 (2007)

    Google Scholar 

  21. V. Adivarahan, W.H. Sun, A. Chitnis, M. Shatalov, S. Wu, H.P. Maruska, M. Khan, Appl. Phys. Lett. 85, 2175 (2004)

    CAS  Google Scholar 

  22. J. Zhang, E. Kuokstis, Q. Fareed, H. Wang, J. Yang, G. Simin, M.A. Khan, Appl. Phys. Lett. 79, 925 (2001)

    CAS  Google Scholar 

  23. H.N. Li, T.C. Sadler, P.J. Parbrook, J. Cryst. Growth 383, 72 (2013)

    CAS  Google Scholar 

  24. Y. Chen, H. Song, D. Li, X. Sun, H. Jiang, Z. Li, G. Miao, Mater. Lett. 114, 26 (2014)

    CAS  Google Scholar 

  25. T. Aggerstam, S. Lourdudoss, H.H. Radamson, M. Sjödin, P. Lorenzini, D.C. Look, Thin Solid Films 515, 705 (2006)

    CAS  Google Scholar 

  26. I. Altuntas, M.N. Kocak, G. Yolcu, H.F. Budak, A.E. Kasapoğlu, S. Horoz, E. Gür, I. Demir, Mater. Sci. Semicond. Process. 127, 105733 (2021)

    CAS  Google Scholar 

  27. T.Y. Wang, J.H. Liang, G.W. Fu, D.S. Wuu, CrystEngComm 18, 9152 (2016)

    CAS  Google Scholar 

  28. X. Zhang, F.J. Xu, J.M. Wang, C.G. He, L.S. Zhang, J. Huang, J.P. Cheng, Z.X. Qin, X.L. Yang, N. Tang, X.Q. Wang, B. Shen, CrystEngComm 17, 7496 (2015)

    CAS  Google Scholar 

  29. Q.S. Paduano, D.W. Weyburne, J. Jasinski, Z. Liliental-Weber, J. Cryst. Growth 261, 259–265 (2004)

    CAS  Google Scholar 

  30. M.E.A. Samsudin, Y. Yusuf, M.A. Ahmad, N. Zainal, Mater. Sci. Semicond. Process. 133, 105968 (2021)

    CAS  Google Scholar 

  31. S. Hagedorn, A. Knauer, F. Brunner, A. Mogilatenko, U. Zeimer, M. Weyers, J. Cryst. Growth 479, 16 (2017)

    CAS  Google Scholar 

  32. T. Metzger, R. Hopler, E. Born, O. Ambacher, M. Stutzmann, R. Stommer, M. Schuster, H. Gobel, S. Christiansen, M. Albrecht, H.P. Strunk, Philos. Mag. A 77, 1013 (1998)

    CAS  Google Scholar 

  33. L. Pan, X. Dong, Z. Li, W. Luo, J. Ni, Jpn. J. Appl. Phys. 447, 512 (2018)

    CAS  Google Scholar 

  34. M. Balaji, A. Claudel, V. Fellmann, I. Gélard, E. Blanquet, R. Boichot, A. Pierret, B. Attal-Trétout, A. Crisci, S. Coindeau, H. Roussel, D. Pique, K. Baskar, M. Ponsa, J. Alloys Compd. 526, 103 (2012)

    CAS  Google Scholar 

  35. S. Yang, R. Miyagawa, H. Miyake, K. Hiramatsu, H. Harima, Appl. Phys. Express 4, 031001 (2011)

    Google Scholar 

  36. W. Xiaoyu, M. Su, H. Zhao, Energy 230, 120767 (2021)

    Google Scholar 

  37. I. Demir, Cumhur. Sci. J. 39, 3 (2018)

    Google Scholar 

  38. Z.Y. Fana, N. Newman, Mater. Sci. Eng. B 87, 3 (2001)

    Google Scholar 

  39. M.N.A. Rahman, M.A. Shuhaimi, I.M.A. Khudus, A. Anuar, M.Z. Zainorin, N.A. Talik, N. Chanlek, W.H.A. Majid, J. Electron. Mater. 50, 2313 (2021)

    Google Scholar 

  40. M.N.A. Rahman, Y. Yusuf, A. Anuar, M.R. Mahat, N. Chanlek, N.A. Talik, M.I.M.A. Khudus, N. Zainal, W.H.A. Majid, A. Shuhaimia, CrystEngComm 22, 3309 (2020)

    Google Scholar 

  41. M. Dadsetani, A.R. Omidi, Optik 126, 21 (2015)

    Google Scholar 

  42. Y. Jianchang, W. Junxi, L. Naixin, L. Zhe, R. Jun, L. Jinmin, J. Semicond. 30, 103001 (2009)

    Google Scholar 

  43. X. Rong, X. Wang, G. Chen, J. Pan, P. Wang, H. Liu, F. Xu, P. Tan, B. Shen, Superlattices Microstruct. 93, 27 (2016)

    CAS  Google Scholar 

  44. I. Perkitel, I. Altuntaş, I. Demir, Gazi Univ. J. Sci. (2021). https://doi.org/10.35378/gujs.822954

    Article  Google Scholar 

  45. A. Severino, I. Ferdinando, Phys. Status Solidi 5, 253 (2016)

    Google Scholar 

  46. W. Wei, Y. Peng, J. Wang, M.F. Saleem, W. Wang, L. Li, Y. Wang, W. Sun, J. Nanomater. 11, 698 (2021)

    CAS  Google Scholar 

  47. M.X. Wang, F.J. Xu, N. Xie, Y.H. Sun, B.Y. Liu, W.K. Ge, X.N. Kang, Z.X. Qin, X.L. Yang, X.Q. Wang, B. Shen, Appl. Phys. Lett. 114, 112105 (2019)

    Google Scholar 

  48. Y. Feng, H. Wei, S. Yang, Z. Chen, L. Wang, S. Kong, G. Zhao, X. Liu, Sci. Rep. 4, 6416 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the usage of the Nanophotonics Research and Application Center at Sivas Cumhuriyet University (CUNAM) facilities. This work is supported by the TÜBITAK-The Scientific and Technological Research Council of Turkey, under Project Number 118F425.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the article.

Corresponding author

Correspondence to Ilkay Demir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simsek, I., Yolcu, G., Koçak, M. et al. Nucleation layer temperature effect on AlN epitaxial layers grown by metalorganic vapour phase epitaxy. J Mater Sci: Mater Electron 32, 25507–25515 (2021). https://doi.org/10.1007/s10854-021-07016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07016-9

Navigation