Skip to main content

Advertisement

Log in

Prior information affecting traffic dynamics in a two dimensional (2D) network

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Due to the fast developments of information technology and sensor technology, drivers get a precise estimate of real-time traffic conditions in the next moment. According to the situation, drivers can change their driving behavior while using their skills in advance with the help of prior information and they change their path through the turning point on road. To explore this phenomenon, a two-dimensional (2D) lattice model by incorporating the prior information (predictive effect) with the junction on road is proposed. At the junction of the road, traffic can enter into various downstream lanes from the upstream. The intensity of traffic at downstream may vary depending on the proportion of traffic. To analyze the proposed model, the stability condition is obtained without and with the control signal through the control method which shows that the stable region increases when the control signal is considered into account. The theoretical findings indicate that the predictive effect could affect the stability of diverging traffic. Numerical simulation verifies the theoretical findings which shows the results for the traffic flow stability with the consideration of the predictive effect and junction on road in 2D lattice model.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data is listed.]

References

  1. H.X. Ge, S.Q. Dai, L.Y. Dong, Y. Xue, Phys. Rev. E 70, 066134 (2004)

    Article  ADS  Google Scholar 

  2. R. Jiang, Q.S. Wu, Z.J. Zhu, Phys. Rev. E 64, 017101 (2001)

    Article  ADS  Google Scholar 

  3. T.Q. Tang, Y.P. Wang, X.B. Yang, Y.H. Wu, Nonlinear Dyn. 70, 1397 (2012)

    Article  Google Scholar 

  4. T.Q. Tang, J.G. Li, H.J. Huang, X.B. Yang, Measurement 48, 63 (2014)

    Article  ADS  Google Scholar 

  5. T.Q. Tang, H.J. Huang, H.Y. Shang, Transp. Res. Part D 41, 423 (2015)

    Article  Google Scholar 

  6. T.Q. Tang, Q. Yu, K. Liu, Phys. A 466, 1 (2017)

    Article  Google Scholar 

  7. Y. Guo, Y. Xue, Y. Shi, F.P. Wei, L.Z. Lü, H.D. He, Commun. Nonlinear Sci. Numer. Simul. 59, 553 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. W.X. Zhu, H.M. Zhang, Phys. A 496, 274 (2018)

    Article  MathSciNet  Google Scholar 

  9. Y.Q. Sun, H.X. Ge, R.J. Cheng, Phys. A 521, 752 (2019)

    Article  MathSciNet  Google Scholar 

  10. P. Liao, T.Q. Tang, T. Wang, J. Zhang, Phys. A 525, 108 (2019)

    Article  Google Scholar 

  11. K. Nagel, M. Schreckenberg, J. Phys. I 2, 2221 (1992)

    Google Scholar 

  12. K. Gao, R. Jiang, S.X. Hu, B.H. Wang, Q.S. Wu, Phys. Rev. E 76, 026105 (2007)

    Article  ADS  Google Scholar 

  13. T.Q. Tang, Y.X. Rui, J. Zhang, H.Y. Shang, Phys. A 492, 1782 (2018)

    Article  MathSciNet  Google Scholar 

  14. R. Jiang, Q.S. Wu, Z.J. Zhu, Transp. Res. Part B 36, 405 (2002)

    Article  Google Scholar 

  15. A.K. Gupta, V.K. Katiyar, Phys. A 368, 551 (2006)

    Article  Google Scholar 

  16. T.Q. Tang, H.J. Huang, H.Y. Shang, Phys. A 468, 322 (2017)

    Article  Google Scholar 

  17. R.J. Cheng, H.X. Ge, J.F. Wang, Phys. Lett. A 381, 1302 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. R.J. Cheng, H.X. Ge, J.F. Wang, Appl. Math. Comput. 332, 493 (2018)

    MathSciNet  Google Scholar 

  19. Q.T. Zhai, H.X. Ge, R.J. Cheng, Phys. A 490, 774 (2018)

    Article  MathSciNet  Google Scholar 

  20. A.K. Gupta, Int. J. Mod. Phys. C 24, 1350018 (2013)

    Article  ADS  Google Scholar 

  21. T. Nagatani, Phys. A 261, 599 (1998)

    Article  MathSciNet  Google Scholar 

  22. J.F. Tian, Z.Z. Yuan, B. Jia, M.H. Li, G.J. Jiang, Phys. A 391, 4476 (2012)

    Article  Google Scholar 

  23. C. Tian, D.H. Sun, M. Zhang, Commun. Nonlinear Sci. Numer. Simul. 16, 4524 (2011)

    Article  ADS  Google Scholar 

  24. D.H. Sun, M. Zhang, C. Tian, Mod. Phys. Lett. B 28, 1450091 (2014)

    Article  ADS  Google Scholar 

  25. G.H. Peng, S.H. Yang, H.Z. Zhao, Commun. Theor. Phys. 70, 803 (2018)

    Article  Google Scholar 

  26. A.K. Gupta, S. Sharma, P. Redhu, Nonlinear Dyn. 80, 1091 (2015)

    Article  Google Scholar 

  27. P. Redhu, A.K. Gupta, Phys. A 445, 150 (2016)

    Article  MathSciNet  Google Scholar 

  28. N. Madaan, S. Sharma, Int. J. Mod. Phys. B 33, 1950248 (2019)

    Article  ADS  Google Scholar 

  29. G.H. Peng, H. Kuang, L. Qing, Phys. A 509, 651 (2018)

    Article  Google Scholar 

  30. G.H. Peng, K. Bai, H. Kuang, Phys. A 526, 121064 (2019)

    Article  MathSciNet  Google Scholar 

  31. G.H. Peng, H. Kuang, K. Bai, Phys. A 526, 120772 (2019)

    Article  MathSciNet  Google Scholar 

  32. P. Redhu, V. Siwach, Phys. A 492, 1473 (2018)

    Article  MathSciNet  Google Scholar 

  33. H.X. Ge, R.J. Cheng, Phys. A 387, 6952 (2008)

    Article  Google Scholar 

  34. C.T. Jiang, R.J. Cheng, H.X. Ge, Nonlinear Dyn. 91, 777 (2018)

    Article  Google Scholar 

  35. Q.Y. Wang, H.X. Ge, Phys. A 513, 438 (2019)

    Article  Google Scholar 

  36. X.Y. Qi, H.X. Ge, R.J. Cheng, Phys. A 525, 714 (2019)

    Article  MathSciNet  Google Scholar 

  37. G.H. Peng, Commun. Nonlinear Sci. Numer. Simul. 18, 2801 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  38. A.K. Gupta, P. Redhu, Nonlinear Dyn. 76, 1001 (2014)

    Article  Google Scholar 

  39. G.H. Peng, H. Kuang, L. Qing, Phys. A 507, 374 (2018)

    Article  Google Scholar 

  40. R. Kaur, S. Sharma, Phys. A 471, 59 (2017)

    Article  Google Scholar 

  41. R. Kaur, S. Sharma, Phys. Lett. A 382, 1449 (2018)

    Article  ADS  Google Scholar 

  42. G.H. Peng, S.H. Yang, H.Z. Zhao, Phys. A 509, 855 (2018)

    Article  Google Scholar 

  43. Y. Zhang, S. Wang, D.B. Pan, G. Zhang, Phys. A 561, 125269 (2021)

    Article  Google Scholar 

  44. T. Nagatani, Phys. A 265, 297 (1999)

    Article  Google Scholar 

  45. S. Sharma, Phys. A 421, 401 (2015)

    Article  Google Scholar 

  46. T. Wang, Z.Y. Gao, X.M. Zhao, J.F. Tian, W.Y. Zhang, Chin. Phys. B 21, 070507 (2012)

    Article  ADS  Google Scholar 

  47. G.H. Peng, S.H. Yang, D.X. Xia, X.Q. Li, Phys. A 506, 929 (2018)

    Article  Google Scholar 

  48. G.H. Peng, S.H. Yang, H.Z. Zhao, L. Qing, Int. J. Mod. Phys. C 29, 1850083 (2018)

    Article  ADS  Google Scholar 

  49. G.H. Peng, H.Z. Zhao, X.Q. Li, Phys. A 515, 31 (2019)

    Article  MathSciNet  Google Scholar 

  50. F.X. Sun, A.H.F. Chow, S.M. Lo, H.X. Ge, Phys. A 511, 389 (2018)

    Article  MathSciNet  Google Scholar 

  51. A.K. Gupta, P. Redhu, Phys. A 392, 5622 (2013)

    Article  Google Scholar 

  52. S. Sharma, Nonlinear Dyn. 81, 991 (2015)

    Article  Google Scholar 

  53. X.Q. Li, K.L. Fang, G.H. Peng, Phys. A 486, 814 (2017)

    Article  MathSciNet  Google Scholar 

  54. G.H. Peng, Commun. Nonlinear Sci. Numer. Simul. 18, 559 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  55. G.H. Peng, H.D. He, W.Z. Lu, Nonlinear Dyn. 81, 417 (2015)

    Article  Google Scholar 

  56. G.H. Peng, S.H. Yang, D.X. Xia, X.Q. Li, Nonlinear Dyn. 94, 2969 (2018)

    Article  Google Scholar 

  57. G.H. Peng, H. Kuang, H.Z. Zhao, L. Qing, Phys. A 515, 93 (2019)

    Article  MathSciNet  Google Scholar 

  58. N. Madaan, S. Sharma, Phys. A 564, 125446 (2021)

    Article  Google Scholar 

  59. O. Biham, A.A. Middleton, D. Levine, Phys. Rev. A 46, R6124 (1992)

    Article  ADS  Google Scholar 

  60. T. Nagatani, Phys. Rev. E 48, 3290 (1993)

    Article  ADS  Google Scholar 

  61. K.H. Chung, P.M. Hui, G.Q. Gu, Phys. Rev. E 51, 772 (1995)

    Article  ADS  Google Scholar 

  62. T. Nagatani, Phys. Rev. E 59, 4857 (1999)

  63. A.K. Gupta, P. Redhu, Phys. Lett. A 377, 2027 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  64. P. Redhu, A.K. Gupta, Nonlinear Dyn. 78, 957 (2014)

  65. P. Redhu, A.K. Gupta, Nonlinear Dyn. 86, 389 (2016)

    Article  Google Scholar 

  66. C. Zhai, W. Wu, Int. J. Mod. Phys. C 31, 2050089 (2020)

    Article  ADS  Google Scholar 

  67. Y. Liu, C.K. Wong, Phys. Lett. A 384, 126668 (2020)

    Article  MathSciNet  Google Scholar 

  68. L. Li, R.J. Cheng, H.X. Ge, Phys. A 561, 125295 (2021)

    Article  Google Scholar 

  69. T. Wang, R. Zang, K. Xu, J. Zhang, Phys. A 526, 120711 (2019)

    Article  Google Scholar 

  70. T. Wang, R.J. Cheng, H.X. Ge, Phys. A 527, 121425 (2019)

    Article  MathSciNet  Google Scholar 

  71. D. Kaur, S. Sharma, Eur. Phys. J. B 93, 1 (2020)

    Article  Google Scholar 

  72. D. Kaur, S. Sharma, Phys. A 539, 122913 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by SERB-POWER SPG/2021/000591 funded by Science and Engineering Research Board (SERB).

Author information

Authors and Affiliations

Authors

Contributions

SS gave the idea of the proposal and supervised the work. The implementation of the idea, analysis, and the simulation had performed by DK. SS and DK wrote manuscript and revised it.

Corresponding author

Correspondence to Sapna Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, D., Sharma, S. Prior information affecting traffic dynamics in a two dimensional (2D) network. Eur. Phys. J. B 94, 183 (2021). https://doi.org/10.1140/epjb/s10051-021-00187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00187-8

Navigation