Skip to main content
Log in

Investigation of anti-condensation strategies in the methanol synthesis reactor using computational fluid dynamics

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Flow mal-distribution in the shell side of the gas-cooled conventional reactor (CR) in the mega methanol plant is responsible for producing gas condensate in the catalytic zone. This phenomenon leads to catalyst agglomeration and efficiency reduction in the reactor. In this study, two novel and viable strategies, possible to be implemented in working reactors, are introduced to prevent condensation. In the first strategy, co-current mode (CCM), the reactant flow changes from counter-current into the co-current. In this regard, the feed inlet is replaced from the bottom of the reactor into the top. In the second strategy, changed-bed mode (CBM), the catalyst particles at the last two meters of the reactor are replaced with non-reactive ceramic balls. The results for three-dimensional computational fluid dynamics (CFD) in CR have been validated against previous study and industrial data, indicating close agreement. The main advantage of CCM and CBM is that the sudden temperature drop fails to occur at the end of the reactor. Consequently, the higher temperature of the products prevents water and methanol condensation. In addition, the CCM leads to a milder temperature profile throughout the shell side, which increases catalyst durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A0 :

model constant

As :

model constant

C1 :

model constant

C1ε :

transport equations constant

C2ε :

transport equations constant

G k :

turbulence kinetic generation of mean velocity gradients

C p :

heat capacity

n:

number of recorded data

dp :

diameter of the particles

Cμ :

model constant

Dm,i :

diffusion coefficient

E:

total energy

G b :

turbulence kinetic generation of buoyancy

Ki:

equilibrium constant

DEN:

parameter in the reaction rate expressions

J:

diffusion mass flux

keff :

effective thermal conductivity

m:

mass fraction

h:

enthalpy

p:

pressure

Ri :

total reaction rate

S h :

chemical reaction heat

S k :

user-defined source terms

Sε :

user-defined source terms

f:

fugacity

T:

temperature

u:

velocity element

yi :

recorded data

ȳ:

average of recorded data

U:

model parameter

V:

velocity vector

υ :

kinetic viscosity

x:

length of the reactor

Ym :

fluctuation dilation incompressible turbulence to dissipation rate

ΔH298 :

reaction enthalpy at 298 K

k′, ki :

kinetic parameters

RGWS:

reverse water gas shift

μ :

gas dynamic viscosity

ε :

kinetic energy dissipation rate

ρ :

density

β :

parameter in the reaction rate

MeOH:

methanol

σ k :

turbulent Prandtl numbers for k

σ ε :

turbulent Prandtl number for ε

τ :

shear stress

γ :

porosity

δ ij :

Kronecker Delta

eff:

effective

f:

fluid

s:

solid

g:

gas

Ref:

reference point

i, j:

components

References

  1. G. Leonzio, J. CO2 Utilization, 27, 326 (2018).

    Article  CAS  Google Scholar 

  2. L. Chen, Q. Jiang, Z. Song and D. Posarac, Chem. Eng. Technol., 34, 817 (2011).

    Article  Google Scholar 

  3. S. Sadeghi, L. Vafajoo, M. Kazemeini and M. Fattahi, APCBEE Procedia, 10, 84 (2014).

    Article  CAS  Google Scholar 

  4. A. Mirvakili and M. Rahimpour, Appl. Therm. Eng., 91, 1059 (2015).

    Article  CAS  Google Scholar 

  5. A. Mirvakili, A. Bakhtyari and M. R. Rahimpour, Appl. Therm. Eng., 128, 64 (2018).

    Article  Google Scholar 

  6. F. Samimi, D. Karimipourfard and M. R. Rahimpour, Chem. Eng. Res. Des., 140, 44 (2018).

    Article  CAS  Google Scholar 

  7. A. Keshavarz, A. Mirvakili, S. Chahibakhsh, A. Shariati and M. Rahimpour, Chem. Eng. Processing-Process Intensification, 158, 108176 (2020).

    Article  CAS  Google Scholar 

  8. F. Nasrollahi, G. Bakeri, A. F. Ismail, M. Rahimnejad and M. Imanian, Korean J. Chem. Eng., 30, 1867 (2013).

    Article  CAS  Google Scholar 

  9. M. Rahimpour and M. Lotfinejad, Chem. Eng. Processing: Process Intensification, 47, 1819 (2008).

    Article  CAS  Google Scholar 

  10. Z. Eksiri, M. Mozdianfard, A. Mirvakili and M. Rahimpour, Chem. Eng. Res. Des., 162, 212 (2020).

    Article  CAS  Google Scholar 

  11. W. L. Luyben, Ind. Eng. Chem. Res., 49, 6150 (2010).

    Article  CAS  Google Scholar 

  12. B. Rahmatmand, M. R. Rahimpour and P. Keshavarz, Fuel Process. Technol., 193, 159 (2019).

    Article  CAS  Google Scholar 

  13. A. Mirvakili, S. Chahibakhsh, M. Ebrahimzadehsarvestani, E. Soroush and M. Rahimpour, J. Taiwan Inst. Chem. Engineers, 104, 40 (2019).

    Article  CAS  Google Scholar 

  14. B. Redondo, M. T. Shah, V K. Pareek, R. P. Utikar, P. A. Webley, J. Patel, W. J. Lee and T. Bhatelia, Chem. Eng. Processing-Process Intensification, 143, 107606 (2019).

    Article  CAS  Google Scholar 

  15. F. Manenti, A. Leon-Garzona and G. Giulia Bozzano, Chem. Eng. Trans, 35 (2013).

  16. M. Son, Y. Woo, G. Kwak, Y.-J. Lee and M.-J. Park, Int. J. Heat Mass Transfer, 145, 118776 (2019).

    Article  CAS  Google Scholar 

  17. A. Pavlišič, M. Huš, A. Prašnikar and B. Likozar, J. Cleaner Production, 275, 122958 (2020).

    Article  Google Scholar 

  18. M. Huš, D. Kopač, N. Štefančič, D. Jurković and B. Likozar, Catal. Sci. Technol., 7, 5900 (2017).

    Article  Google Scholar 

  19. D. Kopač, M. Huš, M. Ogrizek and B. Likozar, J. Phys. Chem. C, 121, 17941 (2017).

    Article  Google Scholar 

  20. F. Balduzzi, A. Bianchini, R. Maleci, G. Ferrara and L. Ferrari, Renewable Energy, 85, 419 (2016).

    Article  Google Scholar 

  21. B. Xia and D.-W. Sun, Computers and Electronics in Agriculture, 34, 5 (2002).

    Article  Google Scholar 

  22. M. Rahimpour, Chem. Eng. Commun., 194, 1638 (2007).

    Article  CAS  Google Scholar 

  23. H. Kopetsch, Process and plant for producing methanol, in, Lurgi GmbH (2011).

  24. P. Tijm, F. Waller and D. Brown, Appl. Catal. A: Gen., 221, 275 (2001).

    Article  CAS  Google Scholar 

  25. D. Miieller and A. Bormann, Process and plant for producing methanol, in, LURGI GMBH (2011).

  26. X. Cui and S. K. Kær, Chem. Eng. J., 393, 124632 (2020).

    Article  CAS  Google Scholar 

  27. D. S. Marlin, E. Sarron and Ó. Sigurbjörnsson, Front. Chem., 6, 446 (2018).

    Article  CAS  Google Scholar 

  28. J. Zhang, T. Liu, Q. Huang, Z. Luo, A. Lu and L. Zhu, Mater. Chem. Phys., 255, 123611 (2020).

    Article  CAS  Google Scholar 

  29. S. Lakhani, A. Raul and S. K. Saha, Appl. Therm. Eng., 123, 458 (2017).

    Article  Google Scholar 

  30. V. Dubovsky, G. Ziskind and R. Letan, Appl. Therm. Eng., 31, 3453 (2011).

    Article  CAS  Google Scholar 

  31. A. F. Ansys, 15.0 User’s Guide, ANSYS, Inc., United States (2013).

    Google Scholar 

  32. A. Fluent, ANSYS fluent theory guide 15.0, ANSYS, Canonsburg, PA, 33 (2013).

    Google Scholar 

  33. Z.-q. Yao, H.-c. Shen and H. Gao, J. Hydrodynamics, 25, 131 (2013).

    Article  Google Scholar 

  34. M. Peter, M. B. Fichtl, H. Ruland, S. Kaluza, M. Muhler and O. Hinrichsen, Chem. Eng. J., 203, 480 (2012).

    Article  CAS  Google Scholar 

  35. J. H. Ferziger and M. Perić, Computational methods for fluid dynamics, Springer (2002).

Download references

Acknowledgements

The authors are grateful to the Shiraz University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azadeh Mirvakili or Mohammad Reza Rahimpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keramat, F., Mirvakili, A., Shariati, A. et al. Investigation of anti-condensation strategies in the methanol synthesis reactor using computational fluid dynamics. Korean J. Chem. Eng. 38, 2020–2033 (2021). https://doi.org/10.1007/s11814-021-0916-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0916-z

Keywords

Navigation