Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GENOMICS AND GENE THERAPY

Gene therapy in a murine model of chronic eosinophilic leukemia-not otherwise specified (CEL-NOS)

Subjects

Abstract

Chronic eosinophilic leukemia-not otherwise specified (CEL-NOS) is a rare, aggressive, fatal disease characterized by blood eosinophilia and dysfunction of organs infiltrated with eosinophils. Clinically, the disease manifests with weight loss, cough, weakness, diarrhea, and multi-organ dysfunction that is unresponsive to therapy. We developed a one-time gene therapy for CEL-NOS using an adeno-associated virus (AAV) expressing an anti-eosinophil monoclonal antibody (AAVrh.10mAnti-Eos) to provide sustained suppression of eosinophil numbers in blood, thus reducing eosinophil tissue invasion and organ dysfunction. A novel CEL-NOS model was developed in NOD-scid IL2rγnull (NSG) mice by administration of AAV expressing the cytokine IL5 (AAVrh.10mIL5), resulting in marked peripheral and tissue eosinophilia of the heart, lung, liver, and spleen, and eventually death. Mice were administered AAVrh.10mAnti-Eos (1011 genome copies) 4 wk after administration of AAVrh.10mIL5 and evaluated for anti-eosinophil antibody expression, blood eosinophil counts, organ eosinophil invasion, and survival. AAVrh.10mAnti-Eos expressed persistent levels of the anti-eosinophil antibody for >24 wk. Strikingly, CEL-NOS treated mice had markedly lower blood eosinophil levels and reduced mortality when compared with control treated mice. These results suggest that a single treatment with AAVrh.10mAnti-Eos has the potential to provide substantial therapeutic benefit to patients with CEL-NOS, a fatal malignant disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Murine model of CEL-NOS treated with AAVrh.10mAnti-Eos in NSG male mice.
Fig. 2: Murine model of CEL-NOS treated with AAVrh.10mAnti-Eos in NSG female mice.
Fig. 3: Male and female NSG CEL-NOS mice organ weights following AAVrh.10mAnti-Eos therapy.
Fig. 4: Survival of CEL-NOS NSG murine model mice treated with AAVrh.10mAnti-Eos.

Similar content being viewed by others

References

  1. Gotlib J. World Health Organization-defined eosinophilic disorders: 2015 update on diagnosis, risk stratification, and management. Am J Hematol. 2015;90:1077–89.

    Article  CAS  PubMed  Google Scholar 

  2. Gotlib J. World Health Organization-defined eosinophilic disorders: 2017 update on diagnosis, risk stratification, and management. Am J Hematol. 2017;92:1243–59.

    Article  CAS  PubMed  Google Scholar 

  3. Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129:704–14.

    Article  CAS  PubMed  Google Scholar 

  4. Crane MM, Chang CM, Kobayashi MG, Weller PF. Incidence of myeloproliferative hypereosinophilic syndrome in the United States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol. 2010;126:179–81.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dunphy CH. Chronic eosinophilic leukemia, not otherwise specified (CEL, NOS). Cancer Ther Rev. 2012;8:30–4.

    Article  Google Scholar 

  6. Ogbogu PU, Bochner BS, Butterfield JH, Gleich GJ, Huss-Marp J, Kahn JE, et al. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol. 2009;124:1319–25. e1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Helbig G, Soja A, Bartkowska-Chrobok A, Kyrcz-Krzemien S. Chronic eosinophilic leukemia-not otherwise specified has a poor prognosis with unresponsiveness to conventional treatment and high risk of acute transformation. Am J Hematol. 2012;87:643–5.

    Article  PubMed  Google Scholar 

  8. Part VII: Hematologic Malignancies. In: Hematology (Seventh Edition), edited by Hoffman R, Benz EJ, Silberstein LE, Heslop HE, Weitz JI, et al. Elsevier, 2018, 763–1443 pp.

  9. Bochner BS. Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clin Exp Allergy. 2009;39:317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song DJ, Cho JY, Lee SY, Miller M, Rosenthal P, Soroosh P, et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J Immunol. 2009;183:5333–41.

    Article  CAS  PubMed  Google Scholar 

  11. Song DJ, Cho JY, Miller M, Strangman W, Zhang M, Varki A, et al. Anti-Siglec-F antibody inhibits oral egg allergen induced intestinal eosinophilic inflammation in a mouse model. Clin Immunol. 2009;131:157–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zimmermann N, McBride ML, Yamada Y, Hudson SA, Jones C, Cromie KD, et al. Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy. 2008;63:1156–63.

    Article  CAS  PubMed  Google Scholar 

  13. Nutku E, Aizawa H, Hudson SA, Bochner BS. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood. 2003;101:5014–20.

    Article  CAS  PubMed  Google Scholar 

  14. Nutku E, Hudson SA, Bochner BS. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury. Biochem Biophys Res Commun. 2005;336:918–24.

    Article  CAS  PubMed  Google Scholar 

  15. Varki A, Angata T. Siglecs–the major subfamily of I-type lectins. Glycobiology. 2006;16:1R–27R.

    Article  CAS  PubMed  Google Scholar 

  16. Nutku-Bilir E, Hudson SA, Bochner BS. Interleukin-5 priming of human eosinophils alters siglec-8 mediated apoptosis pathways. Am J Respir Cell Mol Biol. 2008;38:121–4.

    Article  CAS  PubMed  Google Scholar 

  17. Mao H, Kano G, Hudson SA, Brummet M, Zimmermann N, Zhu Z, et al. Mechanisms of Siglec-F-induced eosinophil apoptosis: a role for caspases but not for SHP-1, Src kinases, NADPH oxidase or reactive oxygen. PLoS One. 2013;8:e68143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Camilleri AE, Nag S, Russo AR, Stiles KM, Crystal RG, Pagovich OE. Gene therapy for a murine model of eosinophilic esophagitis. Allergy. 2021;76:2740–52.

  19. Mayginnes JP, Reed SE, Berg HG, Staley EM, Pintel DJ, Tullis GE. Quantitation of encapsidated recombinant adeno-associated virus DNA in crude cell lysates and tissue culture medium by quantitative, real-time PCR. J Virol Methods. 2006;137:193–204.

    Article  CAS  PubMed  Google Scholar 

  20. Wang F, Cui X, Wang M, Xiao W, Xu R. A reliable and feasible qPCR strategy for titrating AAV vectors. Med Sci Monit Basic Res. 2013;19:187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol. 2007;7:118–30.

    Article  CAS  PubMed  Google Scholar 

  22. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174:6477–89.

    Article  CAS  PubMed  Google Scholar 

  23. Pagovich OE, Camilleri AE, Nag S, Stiles KM, Crystal RG. AAV-mediated anti-eosinophil gene therapy for eosinophilic esophagitis. Mol Ther. 2020;28:90.

    Google Scholar 

  24. Pagovich OE, Russo AR, Whaley AS, Cronin S, Matsumura Y, Stiles KM, et al. Gene Therapy for chronic eosinophilic esophagitis. Mol Ther. 2018;26:161.

    Google Scholar 

  25. Davidoff AM, Ng CY, Zhou J, Spence Y, Nathwani AC. Sex significantly influences transduction of murine liver by recombinant adeno-associated viral vectors through an androgen-dependent pathway. Blood. 2003;102:480–8.

    Article  CAS  PubMed  Google Scholar 

  26. De BP, Heguy A, Hackett NR, Ferris B, Leopold PL, Lee J, et al. High levels of persistent expression of alpha1-antitrypsin mediated by the nonhuman primate serotype rh.10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses. Mol Ther. 2006;13:67–76.

    Article  CAS  PubMed  Google Scholar 

  27. Nietupski JB, Hurlbut GD, Ziegler RJ, Chu Q, Hodges BL, Ashe KM, et al. Systemic administration of AAV8-alpha-galactosidase A induces humoral tolerance in nonhuman primates despite low hepatic expression. Mol Ther. 2011;19:1999–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu Z, Sun J, Zhang T, Yin C, Yin F, Van Dyke T, et al. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther. 2008;16:280–9.

    Article  PubMed  Google Scholar 

  29. Dane AP, Wowro SJ, Cunningham SC, Alexander IE. Comparison of gene transfer to the murine liver following intraperitoneal and intraportal delivery of hepatotropic AAV pseudo-serotypes. Gene Ther. 2013;20:460–4.

    Article  CAS  PubMed  Google Scholar 

  30. Morsia E, Reichard K, Pardanani A, Tefferi A, Gangat N. WHO defined chronic eosinophilic leukemia, not otherwise specified (CEL, NOS): a contemporary series from the Mayo Clinic. Am J Hematol 2020;95:E172–E174.

    Article  PubMed  Google Scholar 

  31. Curtis C, Ogbogu P. Hypereosinophilic syndrome. Clin Rev Allergy Immunol. 2016;50:240–51.

    Article  CAS  PubMed  Google Scholar 

  32. Falchi L, Verstovsek S. Eosinophilia in hematologic disorders. Immunol Allergy Clin North Am. 2015;35:439–52.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gotlib J. World Health Organization-defined eosinophilic disorders: 2011 update on diagnosis, risk stratification, and management. Am J Hematol. 2011;86:677–88.

    Article  PubMed  Google Scholar 

  34. Strati P, Cortes J, Faderl S, Kantarjian H, Verstovsek S. Long-term follow-up of patients with hypereosinophilic syndrome treated with Alemtuzumab, an anti-CD52 antibody. Clin Lymphoma Myeloma Leuk. 2013;13:287–91.

    Article  CAS  PubMed  Google Scholar 

  35. Hudson SA, Herrmann H, Du J, Cox P, Haddad el B, Butler B, et al. Developmental, malignancy-related, and cross-species analysis of eosinophil, mast cell, and basophil siglec-8 expression. J Clin Immunol. 2011;31:1045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klion AD 55 - Eosinophilia. In: Keystone JS, Freedman DO, Kozarsky PE, Connor BA, Nothdurft HD (eds). Travel Medicine (Third Edition). Elsevier Inc.: London, 2013, pp. 501–9.

  37. Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–66.

    Article  CAS  PubMed  Google Scholar 

  38. Dellon ES, Peterson KA, Murray JA, Falk GW, Gonsalves N, Chehade M, et al. Anti-Siglec-8 antibody for eosinophilic gastritis and duodenitis. N Engl J Med. 2020;383:1624–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siebenhaar F, Bonnekoh H, Hawro T, Hawro MO, Michaelis EG, Rasmussen HS, et al. Safety and efficacy data of AK002, an anti-siglec-8 monoclonal antibody, in patients with indolent systemic mastocytosis (ISM): Results from a first-in-human, open-label phase 1 study. 2019; https://www.allakos.com/file.cfm/59/docs/Levine_at_al_AAAAI_March_2020.pdf.

  40. Allakos. Overview. 2020; https://www.allakos.com/.

  41. Altrichter S, Staubach P, Pasha M, Rasmussen H, Singh B, Chang A, et al. Clincial activity of AK002, an anti-siglec-8 antibody, in multiple forms of uncontrolled chronic urticaria. Ann Allergy Asthma Immunol. 2019;123:S27–S28.

    Article  Google Scholar 

  42. Levine T, Tauber J, Nguyen Q, Anesi S, Chang P, Berdy G, et al. Clinical activity of AK002, an anti-siglec-8 antibody, in severe allergic conjunctivitis and comorbid atopic diseases. Ann Allergy, Asthma Immunol. 2019;123:S17.

    Article  Google Scholar 

  43. Butt NM, Lambert J, Ali S, Beer PA, Cross NC, Duncombe A, et al. Guideline for the investigation and management of eosinophilia. Br J Haematol. 2017;176:553–72.

    Article  PubMed  Google Scholar 

  44. Valent P, Klion AD, Horny HP, Roufosse F, Gotlib J, Weller PF, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J Allergy Clin Immunol. 2012;130:607–12. e609.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rosenberg JB, De BP, Hicks MJ, Janda KD, Kaminsky SM, Worgall S, et al. Suppression of nicotine-induced pathophysiology by an adenovirus hexon-based antinicotine vaccine. Hum Gene Ther. 2013;24:595–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Celestin J, Frieri M. Eosinophilic disorders in various diseases. Curr Allergy Asthma Rep. 2012;12:18–24.

    Article  PubMed  Google Scholar 

  47. Mejia R, Nutman TB. Evaluation and differential diagnosis of marked, persistent eosinophilia. Semin Hematol. 2012;49:149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hastie E, Samulski RJ. Recombinant adeno-associated virus vectors in the treatment of rare diseases. Expert Opin Orphan Drugs. 2015;3:675–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12:341–55.

    Article  CAS  PubMed  Google Scholar 

  50. Franklin W, Goetzl EJ. Total absence of eosinophils in a patient with an allergic disorder. Ann Intern Med. 1981;94:352–3.

    Article  CAS  PubMed  Google Scholar 

  51. Abidi K, Belayachi J, Derras Y, Khayari ME, Dendane T, Madani N, et al. Eosinopenia, an early marker of increased mortality in critically ill medical patients. Intensive Care Med. 2011;37:1136–42.

    Article  PubMed  Google Scholar 

  52. Terradas R, Grau S, Blanch J, Riu M, Saballs P, Castells X, et al. Eosinophil count and neutrophil-lymphocyte count ratio as prognostic markers in patients with bacteremia: a retrospective cohort study. PLoS ONE. 2012;7:e42860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gleich GJ, Klion AD, Lee JJ, Weller PF. The consequences of not having eosinophils. Allergy. 2013;68:829–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S Duan and J Paulson (Scripps Research Institute) for providing the sequence of the anti-Siglec-F antibody and N Mohamed for editorial assistance. These studies were supported, in part, by the Department of Genetic Medicine, Weill Cornell Medicine.

Author information

Authors and Affiliations

Authors

Contributions

ARR and SN: performed experimental work and data analysis/interpretation, reviewed manuscript for content. AC: performed experimental work and data analysis/interpretation, participated in the study design, prepared manuscript. RGC, OEP, and KMS: conceived study, performed data analysis/interpretation, prepared manuscript

Corresponding author

Correspondence to Ronald G. Crystal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagovich, O.E., Stiles, K.M., Camilleri, A.E. et al. Gene therapy in a murine model of chronic eosinophilic leukemia-not otherwise specified (CEL-NOS). Leukemia 36, 525–531 (2022). https://doi.org/10.1038/s41375-021-01400-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01400-4

Search

Quick links