Skip to main content
Log in

Green Synthesis, Characterization and Antibacterial Activity of SiO2–ZnO Nanocomposite by Dictyota bartayresiana Extract and Its Cytotoxic Effect on HT29 Cell Line

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study elucidates the biosynthesis of two various metal nanoparticles using brown seaweed algae from the southeast coast region of Tamil Nadu. The synthesized SiO2–ZnO nanocomposite was analyzed using UV–Vis, SEM, FT-IR and XRD analysis. The biomedical studies of synthesized SiO2–ZnO nanocomposite on antioxidant, antibacterial and anticancer activity were evaluated. Antioxidant screening assays were performed by using nitric oxide, hydrogen peroxide and ABTS assay. MTT assay and well-cut drug diffusion assay were performed for anticancer and antibacterial studies. The bio-synthesized SiO2–ZnO nanocomposites have acted as a promising potential drug against HT29 cancer cell line of colon cancer and explore the best range of zone inhibition upon gram-negative and gram-positive bacterial strains. The results provide the facts that the seaweed mediated synthesis of SiO2–ZnO nanocomposite might be the potential source to treat adenorectal colon cancer cell and exhibits significant effect on Escherichia coli, Vibrio cholera, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus. This study confirms that seaweed extract mediated synthesis of SiO2–ZnO nanocomposites significantly inhibits bacterial colonies especially urinary tract infection pathogens and shows excellent antioxidant activity.

Graphic Abstract

Schematic representation of synthesized SiO2–ZnO nanocomposites and their therapeutic evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. E. D. Hassan, A. Fouda, A. A. Radwan, S. S. Salem, M. G. Barghoth, M. A. Awad, and M. S. El-Gamal (2019). Endophytic actinomycetes Streptomyces spp. mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. JBIC J. Biol. Inorg. Chem. 24 (3), 377–393.

    Article  CAS  PubMed  Google Scholar 

  2. A. A. Mohamed, A. Fouda, M. A. Abdel-Rahman, S. E. D. Hassan, M. S. El-Gamal, S. S. Salem, and T. I. Shaheen (2019). Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal. Agric. Biotechnol. 19, 101103.

    Article  Google Scholar 

  3. A. Fouda, G. Abdel-Maksoud, M. A. Abdel-Rahman, S. S. Salem, S. E. D. Hassan, and M. A. H. El-Sadany (2019). Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. Int. Biodeterior. Biodegrad. 142, 160–169.

    Article  CAS  Google Scholar 

  4. T. I. Shaheen and A. Fouda (2018). Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. Int. J. Biol. Macromol. 106, 784–792.

    Article  CAS  PubMed  Google Scholar 

  5. A. Fouda, E. L. Saad, S. S. Salem, and T. I. Shaheen (2018). In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb. Pathog. 125, 252–261.

    Article  CAS  PubMed  Google Scholar 

  6. R. S. Tomar, P. S. Chauhan, and V. Shrivastava (2014). A critical review on nanoparticle synthesis: physicochemical v/s biological approach. World J. Pharm. Res. 4 (1), 595–620.

    Google Scholar 

  7. X. Zheng, H. Lin, J. Zheng, X. Duan, and Y. Yuan (2013). Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol. ACS Catal. 3 (12), 2738–2749.

    Article  CAS  Google Scholar 

  8. F. G. Nador, E. Guisasola Cal, A. Baeza, M. Á. Moreno Villaécija, M. Vallet Regí, and D. Ruiz Molina (2017). Synthesis of polydopamine-like nanocapsules via removal of a sacrificial mesoporous silica template with water. Chem. Eur. J. 23 (12), 2753–2758.

    Article  CAS  PubMed  Google Scholar 

  9. V. J. Mayani, S. V. Mayani, and S. W. Kim (2015). Simple preparation of tungsten supported carbon nanoreactors for specific applications: adsorption, catalysis and electrochemical activity. Appl. Surf. Sci. 345, 433–439.

    Article  CAS  Google Scholar 

  10. J. Shen, G. Ma, J. Zhang, W. Quan, and L. Li (2015). Facile fabrication of magnetic reduced graphene oxide-ZnFe2O4 composites with enhanced adsorption and photocatalytic activity. Appl. Surf. Sci. 359, 455–468.

    Article  CAS  Google Scholar 

  11. Z. L. Wang (2009). ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng.: R 64 (3–4), 33–71.

    Article  Google Scholar 

  12. J. Santhosh kumar, S. V. Kumar, and S. Rajeshkumar (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour.-Effic. Technol. 3 (4), 459–465.

    Google Scholar 

  13. B. Kumar, K. Smita, L. Cumbal, and A. Debut (2014). Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg Chem Appl. https://doi.org/10.1155/2014/523869.

    Article  PubMed  PubMed Central  Google Scholar 

  14. T. K. Sau and C. J. Murphy (2004). Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126 (28), 8648–8649.

    Article  CAS  PubMed  Google Scholar 

  15. L. Castro, M. L. Blázquez, J. A. Muñoz, F. González, and A. Ballester (2013). Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol. 7 (3), 109–116.

    Article  CAS  PubMed  Google Scholar 

  16. M. Singh, R. Kalaivani, S. Manikandan, N. Sangeetha, and A. K. Kumaraguru (2013). Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl. Nanosci. 3 (2), 145–151.

    Article  CAS  Google Scholar 

  17. M. Fresta, G. Puglisi, G. Giammona, G. Cavallaro, N. Micali, and P. M. Furneri (1995). Pefloxacinemesilate-and ofloxacin-loaded polyethylcyanoacrylate nanoparticles: characterization of the colloidal drug carrier formulation. J. Pharm. Sci. 84 (7), 895–902.

    Article  CAS  PubMed  Google Scholar 

  18. S. Nagarajan and K. A. Kuppusamy (2013). Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J. Nanobiotechnol. 11 (1), 1–11.

    Article  Google Scholar 

  19. Y. H. Kim, D. K. Lee, H. G. Cha, C. W. Kim, Y. C. Kang, and Y. S. Kang (2006). Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J. Phys. Chem. B 110 (49), 24923–24928.

    Article  CAS  PubMed  Google Scholar 

  20. M. P. Vinardell, H. Llanas, L. Marics, and M. Mitjan (2017). In vitro comparative skin irritation induced by nano and non-nano zinc oxide. Nanomaterials 7 (3), 56.

    Article  PubMed Central  Google Scholar 

  21. J. W. Rasmussen, E. Martinez, P. Louka, and D. G. Wingett (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7 (9), 1063–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J.M. Antonisamy, K. Eahamban, (2012). UV—VIS spectroscopic and HPLC studies on Dictyota bartayresiana Lamour. Asian Pac. J. Trop. Biomed. 2 (2), S514–S518.

    Article  Google Scholar 

  23. D. Huang, Y. Zhang, J. Zhang, H. Wang, M. Wang, C. Wu, and Z. Zhao (2019). The synergetic effect of a structure-engineered mesoporous SiO2–ZnO composite for doxycycline adsorption. RSC Adv. 9 (66), 38772–38782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A. E. Bayat and R. Shams (2019). Appraising the impacts of SiO2, ZnO and TiO2 nanoparticles on rheological properties and shale inhibition of water-based drilling muds. Colloids Surf. A 581, 123792.

    Article  CAS  Google Scholar 

  25. Z. Jin, H. Yang, J. Lv, L. Tong, G. Chen, and Q. Zhang (2018). Effect of ZnO on viscosity and structure of CaO–SiO2–ZnO–FeO–Al2O3 slags. JOM 70 (8), 1430–1436.

    Article  CAS  Google Scholar 

  26. P. Maijan, P. Amornpitoksuk, and S. Chantarak (2020). Synthesis and characterization of poly (vinyl alcohol-g-acrylamide)/SiO2@ ZnO photocatalytic hydrogel composite for removal and degradation of methylene blue. Polymer 203, 122771.

    Article  CAS  Google Scholar 

  27. Y. Wang, D. Sun, G. Liu, and W. Jiang (2015). Synthesis of Fe3O4@ SiO2@ ZnO core–shell structured microspheres and microwave absorption properties. Adv. Powder Technol. 26 (6), 1537–1543.

    Article  CAS  Google Scholar 

  28. S. Badami, S. Moorkoth, S. R. Rai, E. Kannan, and S. Bhojraj (2003). Antioxidant activity of Caesalpinia sappan heartwood. Biol. Pharm. Bull. 26 (11), 1534–1537.

    Article  CAS  PubMed  Google Scholar 

  29. X. Y. Zhang, Principles of chemical analysis. (China Science Press, Beijing, 2000), pp. 275–276.

    Google Scholar 

  30. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26 (9–10), 1231–1237.

    Article  CAS  PubMed  Google Scholar 

  31. D. Veer, R. M. Singhand, and H. Kumar (2017). Structural and optical characterization of ZnO-TiO2-SiO2 nanocomposites synthesized by sol-gel technique. Asian J. Chem. 29 (11), 2391–2395.

    Article  CAS  Google Scholar 

  32. N. Suganthi and K. Pushpanathan (2018) Spherical and dumbbell shape biphasic paramagnetic ZnS: Fe nanoparticles on ferromagnetic ZnS host background. J. Electron. Mater. 47 (12), 7343–7357

    Article  CAS  Google Scholar 

  33. B. D. Cullity, Elements of X-ray diffraction. (Addison-Wesley Publishing, Boston, 1956), pp. 1–13.

    Google Scholar 

  34. G. Gao, N. Da, S. Reibstein, and L. Wondraczek (2010). Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics. Opt. Express 18 (104), A575–A583.

    Article  CAS  PubMed  Google Scholar 

  35. S. A. Wissinga, O. Kayserb, and R. H. Muller (2004). Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev. 56, 1257–1272.

    Article  Google Scholar 

  36. C. Jacobs, O. Kayser, and R. H. Muller (2000). Nanosuspensions asa new approach for the formulation for the poorlysoluble drug tarazepide. Int. J. Pharm. 196, 161–164.

    Article  CAS  PubMed  Google Scholar 

  37. N. Nasseh, A. H. Panahi, M. Esmati, N. Daglioglu, A. Asadi, H. Rajati, and F. Khodadoost (2020). Enhanced photocatalytic degradation of tetracycline from aqueous solution by a novel magnetically separable FeNi3/SiO2/ZnO nano-composite under simulated sunlight: efficiency, stability, and kinetic studies. J. Mol. Liq. 301, 112434.

    Article  CAS  Google Scholar 

  38. M. Qasim, J. Ananthaiah, S. Dhara, P. Paik, and D. Das (2014). Synthesis and characterization of ultra-fine colloidal silica NPs. Adv. Sci. Eng. Med. 6 (9), 965–973.

    Article  CAS  Google Scholar 

  39. D. Y. Kong, M. Yu, C. K. Lin, X. M. Liu, J. Lin, and J. Fang (2005). Sol-gel synthesis and characterization of Zn2SiO4: Mn@ SiO2 spherical core-shell particles. J. Electrochem. Soc. 152 (9), H146. https://doi.org/10.1149/1.1990612.

    Article  CAS  Google Scholar 

  40. N. Suganthi, S. Thangavel, and K. Kannan (2020). Hibiscus subdariffa leaf extract mediated 2-D fern-like ZnO/TiO2 hierarchical nanoleaf for photocatalytic degradation. FlatChem 24, 100197.

    Article  CAS  Google Scholar 

  41. P. Pacher, J. S. Beckman, and L. Liaudet (2007). Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87 (1), 315–424.

    Article  CAS  PubMed  Google Scholar 

  42. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. Kaus, L. C. Ann, S. K. Bakhori, H. Hasan, and D. Mohamad (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett. 7 (3), 219–242.

    Article  CAS  Google Scholar 

  43. N. Suganthi and K. Pushpanathan (2019). Photocatalytic degradation and antimicrobial activity of transition metal doped mesoporous ZnS nanoparticles. Int. J. Environ. Sci. Technol. 16, 3375–3388.

    Article  CAS  Google Scholar 

  44. V. V. Shinde, D. S. Dalavi, S. S. Mali, C. K. Hong, J. H. Kim, and P. S. Patil (2014). Surfactant free microwave assisted synthesis of ZnO microspheres: study of their antibacterial activity. Appl. Surf. Sci. 307, 495–502.

    Article  CAS  Google Scholar 

  45. N. Padmavathy and R. Vijayaraghavan (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol. Adv. Mater. 9 (3), 035004.

    Article  PubMed  PubMed Central  Google Scholar 

  46. S. Suresh, P. Saravanan, K. Jayamoorthy, S. A. Kumar, and S. Karthikeyan (2016). Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications. Mater. Sci. Eng. C 64, 286–292.

    Article  CAS  Google Scholar 

  47. B. L. Guo, P. Han, L. C. Guo, Y. Q. Cao, A. D. Li, J. Z. Kong, H. F. Zhai, and D. Wu (2015). The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res. Lett. 10 (1), 1.

    Article  Google Scholar 

  48. J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, and H. Kojima (1998). Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 86 (5), 521–522.

    Article  CAS  Google Scholar 

  49. G. Applerot, J. Lellouche, N. Perkas, Y. Nitzan, A. Gedanken, and E. Banin (2012). ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. Rsc Adv. 2 (6), 2314–2321.

    Article  CAS  Google Scholar 

  50. J. Pasquet, Y. Chevalier, E. Couval, D. Bouvier, and M. A. Bolzinger (2015). Zinc oxide as a new antimicrobial preservative of topical products: interactions with common formulation ingredients. Int. J. Pharm. 479 (1), 88–95.

    Article  CAS  PubMed  Google Scholar 

  51. T. J. Brunner, P. Wick, P. Manser, P. Spohn, R. N. Grass, L. K. Limbach, A. Bruinink, and W. J. Stark (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40 (14), 4374–4381.

    Article  CAS  PubMed  Google Scholar 

  52. M. Li, L. Zhu, and D. Lin (2011). Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45 (5), 1977–1983.

    Article  CAS  PubMed  Google Scholar 

  53. N. Talebian, S. M. Amininezhad, and M. Doudi (2013). Controllable synthesis of ZnONPs and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B 120, 66–73.

    Article  CAS  PubMed  Google Scholar 

  54. S. Ostrovsky, G. Kazimirsky, A. Gedanken, and C. Brodie (2009). Selective cytotoxic effect of ZnO NPs on glioma cells. Nano Res. 2 (11), 882–890.

    Article  CAS  Google Scholar 

  55. M. J. Akhtar, M. Ahamed, S. Kumar, M. M. Khan, J. Ahmad, and S. A. Alrokayan (2012). Zinc oxide NPs selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomed. 7, 845–857.

    CAS  Google Scholar 

  56. A. V. A. Mariadoss, V. Ramachandran, V. Shalini, B. Agilan, J. H. Franklin, K. Sanjay, Y. G. Alaa, M. A. Tawfiq, and D. Ernest (2019). Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb. Pathog. 135, 103609.

    Article  CAS  PubMed  Google Scholar 

  57. A. Stankovic, S. Dimitrijevic, and D. Uskokovic (2013). Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids Surf. B 102, 21–28.

    Article  CAS  Google Scholar 

  58. D. C. Hooper (2001). Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin. Infect. Dis. 32 (Supplement_1), S9–S15.

    Article  CAS  PubMed  Google Scholar 

  59. P. Arya (2018). Antioxidant, phytochemical and antibacterial action of Himalayan medicinal herbs Peristrophebicalyculata leaves extract against respiratory tract pathogens. Int. J. Pharm. Pharm. Sci. 10, 16–21.

    Article  CAS  Google Scholar 

  60. S. Shaaban, A. Negm, M. A. Sobhand, and L. A. Wessjohann (2015). Organoselenocyanates and symmetrical diselenides redox modulators: design, synthesis and biological evaluation. Eur. J. Med. Chem. 97, 190–201.

    Article  CAS  PubMed  Google Scholar 

  61. S. BarathManiKanth, K. Kalishwaralal, M. Sriram, S. R. K. Pandian, H. S. Youn, S. Eomand, and S. Gurunathan (2010). Anti-oxidant effect of gold NPs restrains hyperglycemic conditions in diabetic mice. J. Nanobiotechnol. 8 (1), 1–16.

    Article  Google Scholar 

  62. L. Brannon-Peppas and J. O. Blanchette (2004). NPs and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 56 (11), 1649–1659.

    Article  CAS  PubMed  Google Scholar 

  63. F. T. Thema, E. Manikandan, M. S. Dhlamini, and M. Maaza (2015). Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater. Lett. 161, 124–127.

    Article  CAS  Google Scholar 

  64. M. Ramesh, M. Anbuvannan, and G. J. Viruthagiri (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A 136, 864–870.

    Article  CAS  Google Scholar 

  65. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, and A. Varma (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61.

    Article  CAS  Google Scholar 

  66. H. Q. Alijani, S. Pourseyedi, M. T. Mahani, and M. Khatami (2019). Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudianaBertoni and evaluation of its cytotoxic properties. J. Mol. Struct. 1175, 214–218.

    Article  CAS  Google Scholar 

  67. P. Jamdagni, P. Khatri, and J. S. Rana (2018). Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. Sci. 30 (2), 168–175.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Swarna Bharathi.

Ethics declarations

Conflict of interest

On behalf of other authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathi, D.S., Boopathyraja, A., Nachimuthu, S. et al. Green Synthesis, Characterization and Antibacterial Activity of SiO2–ZnO Nanocomposite by Dictyota bartayresiana Extract and Its Cytotoxic Effect on HT29 Cell Line. J Clust Sci 33, 2499–2515 (2022). https://doi.org/10.1007/s10876-021-02170-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02170-w

Keywords

Navigation