Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Positron emission tomography in multiple sclerosis — straight to the target

Abstract

Following the impressive progress in the treatment of relapsing–remitting multiple sclerosis (MS), the major challenge ahead is the development of treatments to prevent or delay the irreversible accumulation of clinical disability in progressive forms of the disease. The substrate of clinical progression is neuro-axonal degeneration, and a deep understanding of the mechanisms that underlie this process is a precondition for the development of therapies for progressive MS. PET imaging involves the use of radiolabelled compounds that bind to specific cellular and metabolic targets, thereby enabling direct in vivo measurement of several pathological processes. This approach can provide key insights into the clinical relevance of these processes and their chronological sequence during the disease course. In this Review, we focus on the contribution that PET is making to our understanding of extraneuronal and intraneuronal mechanisms that are involved in the pathogenesis of irreversible neuro-axonal damage in MS. We consider the major challenges with the use of PET in MS and the steps necessary to realize clinical benefits of the technique. In addition, we discuss the potential of emerging PET tracers and future applications of existing compounds to facilitate the identification of effective neuroprotective treatments for patients with MS.

Key points

  • PET enables direct in vivo measurement of key processes in the pathogenesis of neurodegeneration in multiple sclerosis (MS).

  • PET imaging of neuroinflammatory processes has shown that innate immune cell activation inside and outside visible lesions is a relevant pathogenic mechanism in MS, even in the earliest stages of the disease.

  • Novel PET tracers that specifically target innate immune cells, lymphocytes, metabolic pathways, endothelial molecules and active astrocytes could provide new insights into the role of inflammation in neurodegeneration in MS.

  • PET imaging of myelin in patients with MS has shown that myelin loss and failure of myelin repair can contribute to the accumulation of clinical disability.

  • PET imaging of the mitochondria and synaptic vesicles can be used to detect the earliest metabolic and structural changes in neurons in MS.

  • PET imaging of pathological processes could provide robust outcome measures in clinical trials of drugs designed to delay or prevent neurodegeneration in MS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PET targets in multiple sclerosis.
Fig. 2: PET imaging of neuroinflammation.
Fig. 3: PET imaging of demyelination and remyelination.
Fig. 4: PET imaging of neurodegeneration.

Similar content being viewed by others

References

  1. Thompson, A. & Ciccarelli, O. Towards treating progressive multiple sclerosis. Nat. Rev. Neurol. 16, 589–590 (2020).

    Article  PubMed  Google Scholar 

  2. Kawachi, I. & Lassmann, H. Neurodegeneration in multiple sclerosis and neuromyelitis optica. J. Neurol. Neurosurg. Psychiatry 88, 137–145 (2017).

    Article  PubMed  Google Scholar 

  3. McGinley, M. & Ontaneda, D. MS progression is predominantly driven by age-related mechanisms – NO. Mult. Scler. J. 25, 904–906 (2019).

    Article  Google Scholar 

  4. Filippi, M. et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 18, 198–210 (2019).

    Article  PubMed  Google Scholar 

  5. Absinta, M., Lassmann, H. & Trapp, B. D. Mechanisms underlying progression in multiple sclerosis. Curr. Opin. Neurol. 33, 277–285 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Magliozzi, R. et al. A gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann. Neurol. 68, 477–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. El Behi, M. et al. Adaptive human immunity drives remyelination in a mouse model of demyelination. Brain 140, 967–980 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of microglia in the central nervous system. Nat. Rev. Neurol. 15, 447–458 (2019).

    Article  PubMed  Google Scholar 

  9. Hemmer, B., Kerschensteiner, M. & Korn, T. Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol. 14, 406–419 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Zrzavy, T. et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140, 1900–1913 (2017). A neuropathological study that provides a comprehensive description of patterns of microglial activation in multiple sclerosis and demonstrates a significant reduction of ‘homeostatic’ microglia in the normal-appearing white matter as well as in active and slowly expanding lesions in the brain of patients with multiple sclerosis.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Jäckle, K. et al. Molecular signature of slowly expanding lesions in progressive multiple sclerosis. Brain 143, 2073–2088 (2020).

    Article  PubMed  Google Scholar 

  12. Starost, L. et al. Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis. Acta Neuropathol. 140, 715–736 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Absinta, M. et al. Association of chronic active multiple sclerosis lesions with disability in vivo. JAMA Neurol. 76, 1474 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  14. Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015). This neuropathological paper describes how early active, late active, smouldering, inactive and shadow plaques are distributed across disease stages and disease forms in the brain, spinal cord and optic nerve of patients with multiple sclerosis.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Lassmann, H. Mechanisms of white matter damage in multiple sclerosis. Glia 62, 1816–1830 (2014).

    Article  PubMed  Google Scholar 

  16. van Wageningen, T. A. & van Dam, A-M. Much, if not all, of the cortical damage in MS can be attributed to the microglial cell – yes. Mult. Scler. J. 24, 895–896 (2018).

    Article  Google Scholar 

  17. Mayo, L. et al. Regulation of astrocyte activation b n y glycolipids drives chronic CNS inflammation. Nat. Med. 20, 1147–1156 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Linnerbauer, M., Wheeler, M. A. & Quintana, F. J. Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Singh, S. et al. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. J. Neuroinflammation 14, 57 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Kornek, B. et al. Multiple sclerosis and chronic autoimmune encephalomyelitis. Am. J. Pathol. 157, 267–276 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schultz, V. et al. Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination. Glia 65, 1350–1360 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Patrikios, P. et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129, 3165–3172 (2006).

    Article  PubMed  Google Scholar 

  23. Mahad, D. H., Trapp, B. D. & Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Campbell, G., Licht-Mayer, S. & Mahad, D. Targeting mitochondria to protect axons in progressive MS. Neurosci. Lett. 710, 134258 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Haider, L. et al. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain. Brain 139, 807–815 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  26. Trapp, B. D. & Stys, P. K. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 8, 280–291 (2009). A review summarizing the evidence for the key role played by increased energy demand and reduced energy supply in inducing a chronic state of ‘virtual hypoxia’ in chronically demyelinated axons, which, if not reverted, leads to irreversible neuro-axonal degeneration in the brain of patients with multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  27. Campbell, G. R. & Mahad, D. J. Mitochondrial changes associated with demyelination: consequences for axonal integrity. Mitochondrion 12, 173–179 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Boellaard, R. Standards for PET image acquisition and quantitative data analysis. J. Nucl. Med. 50, 11–21 (2009).

    Article  CAS  Google Scholar 

  29. Wang, G., Rahmim, A. & Gunn, R. N. PET parametric imaging: past, present, and future. IEEE Trans. Radiat. Plasma Med. Sci. 4, 663–675 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bertoldo, A., Rizzo, G. & Veronese, M. Deriving physiological information from PET images: from SUV to compartmental modelling. Clin. Transl. Imaging 2, 239–251 (2014).

    Article  Google Scholar 

  31. National Institute of Mental Health. CNS radiotracer table. https://www.nimh.nih.gov/research/research-funded-by-nimh/therapeutics/cns-radiotracer-table.shtml.

  32. Garden, G. A. & Campbell, B. M. Glial biomarkers in human central nervous system disease. Glia 64, 1755–1771 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  33. Van De Bittner, G. C., Ricq, E. L. & Hooker, J. M. A philosophy for CNS radiotracer design. Acc. Chem. Res. 47, 3127–3134 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Pike, V. Considerations in the development of reversibly binding PET radioligands for brain imaging. Curr. Med. Chem. 23, 1818–1869 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Hooker, J. M. & Carson, R. E. Human positron emission tomography neuroimaging. Annu. Rev. Biomed. Eng. 21, 551–581 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Tonietto, M. et al. Plasma radiometabolite correction in dynamic PET studies: insights on the available modeling approaches. J. Cereb. Blood Flow. Metab. 36, 326–339 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Lyoo, C. H. et al. Cerebellum can serve as a pseudo-reference region in Alzheimer disease to detect neuroinflammation measured with PET radioligand binding to translocator protein. J. Nucl. Med. 56, 701–706 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Barletta, V. T. et al. Evidence of diffuse cerebellar neuroinflammation in multiple sclerosis by 11C-PBR28 MR-PET. Mult. Scler. 26, 668–678 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Turkheimer, F. E. et al. Reference and target region modeling of [11C]-(R)-PK11195 brain studies. J. Nucl. Med. 48, 158–167 (2007).

    PubMed  Google Scholar 

  40. Schubert, J., Tonietto, M., Turkheimer, F., Zanotti-Fregonara, P. & Veronese, M. Supervised clustering for TSPO PET imaging. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-021-05309-z (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Giannetti, P. et al. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain 138, 110–119 (2015).

    Article  PubMed  Google Scholar 

  42. García-Lorenzo, D. et al. Validation of an automatic reference region extraction for the quantification of [18F]DPA-714 in dynamic brain PET studies. J. Cereb. Blood Flow. Metab. 38, 333–346 (2018).

    Article  PubMed  Google Scholar 

  43. Bodini, B. et al. Individual mapping of innate immune cell activation is a candidate marker of patient-specific trajectories of worsening disability in multiple sclerosis. J. Nucl. Med. 61, 1043–1049 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Veronese, M. et al. Quantification of [11C]PIB PET for imaging myelin in the human brain: a test-retest reproducibility study in high-resolution research tomography. J. Cereb. Blood Flow. Metab. 35, 1771–1782 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  45. Bodini, B. et al. Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann. Neurol. 79, 726–738 (2016). This study was the first to use PET to measure myelin content changes in vivo in white matter lesions of patients with multiple sclerosis, showing that the potential of spontaneous myelin repair is heterogeneous across patients and is a key determinant in clinical disability.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Carotenuto, A. et al. [18F]Florbetapir PET/MR imaging to assess demyelination in multiple sclerosis. Eur. J. Nucl. Med. Mol. Imaging 47, 366–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Rissanen, E. et al. Automated reference region extraction and population-based input function for brain [11C]TMSX PET image analyses. J. Cereb. Blood Flow. Metab. 35, 157–165 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Salinas, C. A., Searle, G. E. & Gunn, R. N. The simplified reference tissue model: model assumption violations and their impact on binding potential. J. Cereb. Blood Flow. Metab. 35, 304–311 (2015).

    Article  PubMed  Google Scholar 

  49. Chen, Y. J. et al. Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET. J. Nucl. Med. 56, 1199–1205 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Schubert, J. J. et al. Dynamic 11C-PiB PET shows cerebrospinal fluid flow alterations in Alzheimer disease and multiple sclerosis. J. Nucl. Med. 60, 1452–1460 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Huang, B., Law, M. W.-M. & Khong, P.-L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology 251, 166–174 (2009).

    Article  PubMed  Google Scholar 

  52. Jiang, W., Chalich, Y. & Deen, M. J. Sensors for positron emission tomography applications. Sensors 19, 5019 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  53. Pantel, A. R. et al. PennPET explorer: human imaging on a whole-body imager. J. Nucl. Med. 61, 144–151 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Catana, C. The dawn of a new era in low-dose PET imaging. Radiology 290, 657–658 (2019).

    Article  PubMed  Google Scholar 

  55. Chen, K. T. et al. Ultra-low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology 290, 649–656 (2019).

    Article  PubMed  Google Scholar 

  56. Banati, R. B. et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis. Brain 123, 2321–2337 (2000).

    Article  PubMed  Google Scholar 

  57. Nutma, E. et al. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 142, 3440–3455 (2019). This study characterizes the cellular neuropathology associated with TSPO expression in multiple sclerosis, providing key insights for a correct interpretation of the results of TSPO PET studies in patients with this disease. It shows that, in multiple sclerosis, TSPO expression mainly arises from microglia, but a significant contribution also comes from astrocytes and, to a lesser extent, endothelial cells.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Matthews, P. M. Chronic inflammation in multiple sclerosis – seeing what was always there. Nat. Rev. Neurol. 15, 582–593 (2019). A detailed review summarizing the neuropathological features of chronic inflammation in multiple sclerosis and describing the MRI and PET techniques to measure this process in vivo in patients with this disease.

    Article  CAS  PubMed  Google Scholar 

  59. Singhal, T. et al. 18F-PBR06 versus 11C-PBR28 PET for assessing white matter translocator protein binding in multiple sclerosis. Clin. Nucl. Med. 43, e289–e295 (2018).

    Article  PubMed  Google Scholar 

  60. Singhal, T. et al. Gray matter microglial activation in relapsing vs progressive MS: A [F-18]PBR06-PET study. Neurol. Neuroimmunol. Neuroinflammation 6, e587 (2019).

    Article  Google Scholar 

  61. Rissanen, E. et al. In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using PET imaging and the radioligand 11C-PK11195. J. Nucl. Med. 55, 939–944 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Politis, M. et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 79, 523–530 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  63. Hagens, M. H. J. et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [18F]DPA714 PET. J. Neuroinflammation 15, 4–13 (2018).

    Article  CAS  Google Scholar 

  64. Datta, G. et al. Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 140, 2927–2938 (2017).

    Article  PubMed  Google Scholar 

  65. Sucksdorff, M. et al. Brain TSPO-PET predicts later disease progression independent of relapses in multiple sclerosis. Brain 143, 3318–3330 (2020). A convincing demonstration of the potential utility of TSPO PET, particularly for measurement of innate immune cell activation in the normal-appearing and perilesional white matter, to predict clinical progression in patients with multiple sclerosis.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Bezukladova, S. et al. Insights into disseminated MS brain pathology with multimodal diffusion tensor and PET imaging. Neurol. Neuroimmunol. Neuroinflammation 7, e691 (2020).

    Article  Google Scholar 

  67. Dal-Bianco, A. et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7T magnetic resonance imaging. Acta Neuropathol. 133, 25–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Hametner, S. et al. The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation – a biochemical and histological validation study. Neuroimage 179, 117–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Datta, G. et al. 11C-PBR28 and 18F-PBR111 detect white matter inflammatory heterogeneity in multiple sclerosis. J. Nucl. Med. 58, 1477–1482 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Giannetti, P. et al. Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: an in vivo [(11)C](R)-PK11195-PET pilot study. Neurobiol. Dis. 65, 203–210 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Poirion, E. et al. Structural and clinical correlates of a periventricular gradient of neuroinflammation in multiple sclerosis. Neurology 96, e1865–e1875 (2021). The first TSPO PET-based in vivo report of a periventricular gradient of neuroinflammation in patients with multiple sclerosis, which is associated with microstructural damage and disability progression.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Sucksdorff, M. et al. Evaluation of the effect of fingolimod treatment on microglial activation using serial PET imaging in multiple sclerosis. J. Nucl. Med. 58, 1646–1651 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Sucksdorff, M. et al. Natalizumab treatment reduces microglial activation in the white matter of the MS brain. Neurol. Neuroimmunol. Neuroinflammation 6, e574 (2019).

    Article  Google Scholar 

  74. Guilarte, T. R. TSPO in diverse CNS pathologies and psychiatric disease: a critical review and a way forward. Pharmacol. Ther. 194, 44–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Kreisl, W. C. et al. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. 19, 940–950 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Owen, D. R. et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J. Cereb. Blood Flow. Metab. 32, 1–5 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Ikawa, M. et al. 11C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J. Nucl. Med. 58, 320–325 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Owen, D. R. et al. Pro-inflammatory activation of primary microglia and macrophages increases 18kDa translocator protein expression in rodents but not humans. J. Cereb. Blood Flow. Metab. 37, 2679–2690 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Nutma, E. et al. Activated microglia do not increase 18kDa translocator protein (TSPO) expression in the multiple sclerosis brain. Glia https://doi.org/10.1002/glia.24052 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  80. Bonsack, F., Alleyne, C. H. & Sukumari-Ramesh, S. Augmented expression of TSPO after intracerebral hemorrhage: a role in inflammation? J. Neuroinflammation 13, 151 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Meyer, J. H. et al. Neuroinflammation in psychiatric disorders: PET imaging and promising new targets. Lancet Psychiatry 7, 1064–1074 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  82. Narayanaswami, V. et al. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO. Mol. Imaging 17, 1536012118792317 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Jain, P. et al. Neuroinflammation PET imaging: current opinion and future directions. J. Nucl. Med. 61, 1107–1112 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Ghadery, C., Best, L. A., Pavese, N., Tai, Y. F. & Strafella, A. P. PET evaluation of microglial activation in non-neurodegenerative brain diseases. Curr. Neurol. Neurosci. Rep. 19, 38 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  85. Horti, A. G. et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc. Natl Acad. Sci. USA 116, 1686–1691 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Beaino, W. et al. Purinergic receptors P2Y12R and P2X7R: potential targets for PET imaging of microglia phenotypes in multiple sclerosis. J. Neuroinflammation 14, 259 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  87. Villa, A. et al. Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics 8, 5400–5418 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. James, M. L. et al. Imaging B cells in a mouse model of multiple sclerosis using 64Cu-rituximab PET. J. Nucl. Med. 58, 1845–1851 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Syvänen, S. & Eriksson, J. Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem. Neurosci. 4, 225–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Nahrendorf, M. et al. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc. Imaging 2, 1213–1222 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  91. Montalban, X. et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med. 380, 2406–2417 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Waniewski, R. A. & Martin, D. L. Preferential utilization of acetate by astrocytes is attributable to transport. J. Neurosci. 18, 5225–5233 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Kato, H. et al. Astrocyte metabolism in multiple sclerosis investigated by 1-C-11 acetate PET. J. Cereb. Blood Flow. Metab. 41, 369–379 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  94. Takata, K. et al. 11C-acetate PET imaging in patients with multiple sclerosis. PLoS ONE 9, e111598 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Levitt, P., Pintar, J. E. & Breakefield, X. O. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc. Natl Acad. Sci. USA 79, 6385–6389 (1982).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Saura, J. et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62, 15–30 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Ng, K. P. et al. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain. Alzheimers. Res. Ther. 9, 25 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  98. Ishibashi, K., Miura, Y., Hirata, K., Toyohara, J. & Ishii, K. 18F-THK5351 PET can identify astrogliosis in multiple sclerosis plaques. Clin. Nucl. Med. 45, e98–e100 (2020).

    Article  PubMed  Google Scholar 

  99. Ishibashi, K., Kameyama, M., Miura, Y., Toyohara, J. & Ishii, K. Head-to-head comparison of the two MAO-B radioligands, 18F-THK5351 and 11C-L-deprenyl, to visualize astrogliosis in patients with neurological disorders. Clin. Nucl. Med. 46, e31–e33 (2021).

    Article  PubMed  Google Scholar 

  100. Vuorimaa, A. et al. Increased [11C]TMSX binding to A2A receptors around MS plaques and the normal appearing white matter in secondary progressive multiple sclerosis is explained by astrocytic A2A expression. ECTRIMS Online Library https://onlinelibrary.ectrims-congress.eu/ectrims/2018/ectrims-2018/228945/anna.vuorimaa.increased.5B11c5Dtmsx.binding.to.a2a.receptors.around.ms.plaques.html?f=listing%3D0%2Abrowseby%3D8%2Asortby%3D1%2Asearch%3Dvuorimaa (2018).

  101. Rissanen, E. et al. Adenosine A2A receptors in secondary progressive multiple sclerosis: a [(11)C]TMSX brain PET study. J. Cereb. Blood Flow. Metab. 33, 1394–1401 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Tyacke, R. J. et al. Evaluation of 11C-BU99008, a PET ligand for the imidazoline2 binding site in human brain. J. Nucl. Med. 59, 1597–1602 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Wilson, H. et al. Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson’s disease: an in vivo 11C-BU99008 PET study. Brain 142, 3116–3128 (2019).

    Article  PubMed  Google Scholar 

  104. Escartin, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. van der Weijden, C. W. J. et al. Myelin quantification with MRI: a systematic review of accuracy and reproducibility. Neuroimage 226, 117561 (2021).

    Article  PubMed  Google Scholar 

  107. Mancini, M. et al. An interactive meta-analysis of MRI biomarkers of myelin. eLife 9, e61523 (2020). This excellent interactive meta-analysis reviews all published validation studies on quantitative MRI measures of myelin, concluding that the highest correlations with myelin content are found for magnetization transfer and relaxometry-based measures.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Petiet, A. et al. Ultrahigh field imaging of myelin disease models: toward specific markers of myelin integrity? J. Comp. Neurol. 527, 2179–2189 (2019).

    Article  PubMed  Google Scholar 

  109. Stankoff, B. et al. Imaging of CNS myelin by positron-emission tomography. Proc. Natl Acad. Sci. USA 103, 9304–9309 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Wu, C. et al. A novel PET marker for in vivo quantification of myelination. Bioorg. Med. Chem. 18, 8592–8599 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Wu, C. et al. Longitudinal positron emission tomography imaging for monitoring myelin repair in the spinal cord. Ann. Neurol. 74, 688–698 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Bajaj, A. et al. Identification of the protein target of myelin-binding ligands by immunohistochemistry and biochemical analyses. J. Histochem. Cytochem. 61, 19–30 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Stankoff, B., Poirion, E., Tonietto, M. & Bodini, B. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol. 28, 723–734 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  114. Stankoff, B. et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4-methylaminophenyl)-6-hydroxybenzothiazole. Ann. Neurol. 69, 673–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. De Paula Faria, D. et al. PET imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: comparison of [11C]MeDAS, [11C]CIC and [11C]PIB. Eur. J. Nucl. Med. Mol. Imaging 41, 995–1003 (2014).

    Article  Google Scholar 

  116. Tiwari, A. D. et al. Novel 18F-labeled radioligands for positron emission tomography imaging of myelination in the central nervous system. J. Med. Chem. 62, 4902–4914 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, C. et al. Discovery of 1,2,3-triazole derivatives for multimodality PET/CT/cryoimaging of myelination in the central nervous system. J. Med. Chem. 60, 987–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, C., Wu, C., Zhu, J., Miller, R. H. & Wang, Y. Design, synthesis, and evaluation of coumarin-based molecular probes for imaging of myelination. J. Med. Chem. 54, 2331–2340 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Auvity, S. et al. Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol, 11C-MeDAS, and 11C-PiB. Eur. J. Nucl. Med. Mol. Imaging 47, 490–501 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Matías-Guiu, J. J. A. J. et al. Amyloid PET imaging in multiple sclerosis: an 18F-florbetaben study. BMC Neurol. 15, 243 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  121. Zeydan, B. et al. Pittsburgh compound-B PET white matter imaging and cognitive function in late multiple sclerosis. Mult. Scler. J. 24, 739–749 (2018).

    Article  CAS  Google Scholar 

  122. Carvalho, R. H. F. et al. [11C]PIB PET imaging can detect white and grey matter demyelination in a non-human primate model of progressive multiple sclerosis. Mult. Scler. Relat. Disord. 35, 108–115 (2019).

    Article  PubMed  Google Scholar 

  123. Pytel, V. et al. Amyloid PET findings in multiple sclerosis are associated with cognitive decline at 18 months. Mult. Scler. Relat. Disord. 39, 101926 (2020).

    Article  PubMed  Google Scholar 

  124. Fisher, E. et al. Imaging correlates of axonal swelling in chronic multiple sclerosis brains. Ann. Neurol. 62, 219–228 (2007).

    Article  PubMed  Google Scholar 

  125. Trapp, B. D. et al. Cortical neuronal densities and cerebral white matter demyelination in multiple sclerosis: a retrospective study. Lancet Neurol. 17, 870–884 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  126. Lubetzki, C., Zalc, B., Williams, A., Stadelmann, C. & Stankoff, B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020). A detailed review providing an up-to-date overview of the process of remyelination in multiple sclerosis, including evidence from human neuropathology, experimental models and human imaging studies, and reporting on the progress in the development of therapeutic strategies to promote myelin repair in patients with this disease.

    Article  PubMed  Google Scholar 

  127. Pietroboni, A. M. et al. Amyloid PET as a marker of normal-appearing white matter early damage in multiple sclerosis: correlation with CSF β-amyloid levels and brain volumes. Eur. J. Nucl. Med. Mol. Imaging 46, 280–287 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Brugarolas, P. et al. Development of a PET radioligand for potassium channels to image CNS demyelination. Sci. Rep. 8, 607 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  129. Rodríguez-Rangel, S., Bravin, A. D., Ramos-Torres, K. M., Brugarolas, P. & Sánchez-Rodríguez, J. E. Structure-activity relationship studies of four novel 4-aminopyridine K+ channel blockers. Sci. Rep. 10, 52 (2020).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  130. Wei, W. et al. Predicting PET-derived demyelination from multimodal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med. Image Anal. 58, 101546 (2019).

    Article  PubMed  Google Scholar 

  131. Wei, W. et al. Predicting PET-derived myelin content from multisequence MRI for individual longitudinal analysis in multiple sclerosis. Neuroimage 223, 117308 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Roelcke, U. et al. Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48, 1566–1571 (1997).

    Article  CAS  PubMed  Google Scholar 

  133. Blinkenberg, M. et al. Cortical cerebral metabolism correlates with MRI lesion load and cognitive dysfunction in MS. Neurology 54, 558–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Radu, C. G., Shu, C. J., Shelly, S. M., Phelps, M. E. & Witte, O. N. Positron emission tomography with computed tomography imaging of neuroinflammation in experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 104, 1937–1942 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Buck, D. et al. 18F-FDG PET detects inflammatory infiltrates in spinal cord experimental autoimmune encephalomyelitis lesions. J. Nucl. Med. 53, 1269–1276 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Freeman, L. et al. The neuronal component of gray matter damage in multiple sclerosis: a [(11)C]flumazenil positron emission tomography study. Ann. Neurol. 78, 554–567 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Kang, Y. et al. A multi-ligand imaging study exploring GABAergic receptor expression and inflammation in multiple sclerosis. Mol. Imaging Biol. 22, 1600–1608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mansur, A. et al. Characterization of 3 PET tracers for quantification of mitochondrial and synaptic function in healthy human brain: 18F-BCPP-EF, 11C-SA-4503, and 11C-UCB-J. J. Nucl. Med. 61, 96–103 (2020). A pilot study involving healthy controls that identifies the optimal kinetic analysis method and the suitable acquisition duration for three PET radioligands that target mitochondria and synaptic function, 18F-BCPP-EF, 11C-SA-4503 and 11C-UCB-J. The results of this study are essential for the application of these tracers to the exploration of mitochondrial damage and synaptic dysfunction in neurodegenerative diseases, including multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  139. Finnema, S. J. et al. Imaging synaptic density in the living human brain. Sci. Transl. Med. 8, 348ra96 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Chen, M.-K. et al. Assessing synaptic density in Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA Neurol. 75, 1215–1224 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  141. Matuskey, D. et al. Synaptic changes in Parkinson disease assessed with in vivo imaging. Ann. Neurol. 87, 329–338 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Finnema, S. J. et al. Reduced synaptic vesicle protein 2A binding in temporal lobe epilepsy: a [11C]UCB-J positron emission tomography study. Epilepsia 61, 2183–2193 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Holmes, S. E. et al. Lower synaptic density is associated with depression severity and network alterations. Nat. Commun. 10, 1529 (2019).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Onwordi, E. C. et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun. 11, 246 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Mansur, A. et al. Test–retest variability and reference region-based quantification of 18F-BCPP-EF for imaging mitochondrial complex I in the human brain. J. Cereb. Blood Flow. Metab. 41, 771–779 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Dangond, F. et al. Facing the urgency of therapies for progressive MS – a progressive MS Alliance proposal. Nat. Rev. Neurol. 17, 185–192 (2021). This article illustrates why the International Progressive MS Alliance has chosen to develop a new funding programme for experimental medicine trials which have the potential to advance therapies targeting neurodegeneration in multiple sclerosis.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The studies discussed that were performed in the Paris Brain Institute received funding from: ANR (Agence Nationale de la Recherche; grant MNP2008-007125); CEA (Commissariat aux Energies Atomiques); European Committee for Treatment and Research in MS (ECTRIMS); ELA (European Leukodystrophy Association; grant 2007-0481); ARSEP Foundation (Fondation pour l’aide à la recherche sur la sclérose en plaques); FRM (Fondation pour la Recherche Médicale); INSERM-DHOS (grant 2008–recherche clinique et translationnelle); Investissements d’avenir (grant ANR-10-IAIHU-06); JNLF (Journées de Neurologie de Langue Française); Programme Hospitalier de Recherche Clinique (PHRC national, 2010; APHP). APHP (Assistance Publique des Hôpitaux de Paris) sponsored these clinical studies. The authors are grateful to the Bouvet-Labruyère family for their constant support of our research projects. The authors thank the members of the CIC (Clinical Investigation Center; C. Louapre, J.C. Corvol) and CENIR (Centre de NeuroImagerie de l’ICM; S. Lehericy, E. Bardinet) in the Paris Brain Institute, and members of the SHFJ (Service Hospitalier Frédéric Joliot, Commissariat aux Energies atomiques; M. Bottlaender, B. Kunhast, P. Gervais, V. Lebon) for their invaluable contribution to the authors’ clinical studies and for their technical support. We also thank B. Dubois and the Scientific Committee of the INSIGHT study for kindly providing the 18F-florbetapir PET image. The authors are grateful to C. Fumat and C. Théry for their contribution to the conception and the realization of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to Benedetta Bodini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks F. Barkhof and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodini, B., Tonietto, M., Airas, L. et al. Positron emission tomography in multiple sclerosis — straight to the target. Nat Rev Neurol 17, 663–675 (2021). https://doi.org/10.1038/s41582-021-00537-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00537-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing