Skip to main content
Log in

The complete chloroplast genome and characteristics analysis of Musa basjoo Siebold

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

An ornamental plant often seen in gardens and farmhouses, Musa basjoo Siebold can also be used as Chinese herbal medicine. Its pseudostem and leaves are diuretic; its root can be decocted together with ginger and licorice to cure gonorrhea and diabetes; the decoct soup of its pseudostem can help relieve heat, and the decoct soup of its dried flower can treat cerebral hemorrhage. There have not been many chloroplast genome studies on M. basjoo Siebold.

Methods and results

We characterized its complete chloroplast genome using Novaseq 6000 sequencing. This paper shows that the length of the chloroplast genome M. basjoo Siebold is 172,322 bp, with 36.45% GC content. M. basjoo Siebold includes a large single-copy region of 90,160 bp, a small single-copy region of 11,668 bp, and a pair of inverted repeats of 35,247 bp. Comparing the genomic structure and sequence data of closely related species, we have revealed the conserved gene order of the IR and LSC/SSC regions, which has provided a very inspiring discovery for future phylogenetic research.

Conclusions

Overall, this study has constructed an evolutionary tree of the genus Musa species with the complete chloroplast genome sequence for the first time. As can be seen, there is no obvious multi-branching in the genus, and M. basjoo Siebold and Musa itinerans are the closest relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The identified long repeat regions [29] are deposited in GenBank (login No. BankIt2410783 Musa_basjoo_Siebold MW376865). The following supplementary files are available online: Table S1: Summary of the plastid genome features of the 10 Musaceae studied; Table S2: Simple sequence repeats (SSRs) in the Musa basjoo Siebold plastid genome; Table S3: Long repeat sequences in the Musa basjoo Siebold plastid genome.

Code availability

Not applicable.

Abbreviations

PCR:

Polymerase chain reaction quantitative

PE:

Paired-end

RSCU:

Relative synonymous codon usage

ML:

Maximum likelihood

LSC:

Large single copy

SSC:

Short single copy

IRs:

Inverted repeats

mRNA:

Messenger RNAs

rRNA:

Ribosomal RNAs

tRNA:

Transfer RNAs

SSRs:

Simple sequence repeats

dS:

Synonymous

dN:

Non Synonymous

ITS:

Internal transcribed spacer region

IRa:

Inverted repeats a

IRb:

Inverted repeats b

JLB:

Junction line between LSC and IRb

JSB:

Junction line between IRb and SSC

JSA:

Junction line between SSC and IRa

Ka/Ks:

The ratio between the rate of synonymous (Ks), and non-synonymous (Ka) substitutions

CBOL:

The Consortium for the barcode of life

GTR:

General time reversible

RAxML:

Random axelerated maximum likelihood

References

  1. Amano M, Sawada Y, Motohashi T, Miyata M, Yoshizawa T, Masuda S (1991) A consideration to the original home of Musa basjoo sieb. et zucc. J Agricul Sci 36:66

    Google Scholar 

  2. Yang L, Qun LU, Zhiyuan Z, Jiechun C (2013) Advances in studies on Musa basjoo Sieb.Et Zucc. Journal of Guangdong Pharmaceutical University

  3. Pollux ÉK (2012) Musa (genus). Chrono Press, Cambridge

    Google Scholar 

  4. Balthasar S, Michaelis K, Dinauer N, von Briesen H, Kreuter J, Langer K (2005) Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 26:2723–2732

    CAS  PubMed  Google Scholar 

  5. Gupta AK, Gupta M, Yarwood SJ, Curtis AS (2004) Effect of cellular uptake of gelatin nanoparticles on adhesion, morphology and cytoskeleton organisation of human fibroblasts. J Controll Release 95:197–207

    CAS  Google Scholar 

  6. Han S, Li M, Liu X, Gao H, Wu Y (2013) Construction of amphiphilic copolymer nanoparticles based on gelatin as drug carriers for doxorubicin delivery. Colloids Surf B 102:833–841

    CAS  Google Scholar 

  7. Kim DW, Kang JH, Oh DH, Yong CS, Choi H-G (2012) Development of novel flurbiprofen-loaded solid self-microemulsifying drug delivery system using gelatin as solid carrier. J Microencapsul 29:323–330

    CAS  PubMed  Google Scholar 

  8. Morimoto K, Chono S, Kosai T, Seki T, Tabata Y (2008) Design of cationic microspheres based on aminated gelatin for controlled release of peptide and protein drugs. Drug Delivery 15:113–117

    CAS  PubMed  Google Scholar 

  9. Xu F, Wu H, Wang X, Yang Y, Wang Y, Qian H, Zhang Y (2014) RP-HPLC characterization of lupenone and β-sitosterol in rhizoma Musae and evaluation of the anti-diabetic activity of lupenone in diabetic Sprague-Dawley rats. Molecules (Basel, Switzerland) 19:14114–14127

    Google Scholar 

  10. Otálvaro F, Görls H, Hölscher D, Schmitt B, Echeverri F, Quiñones W, Schneider B (2002) Dimeric phenylphenalenones from Musa acuminata and various haemodoraceae species crystal structure of anigorootin. Phytochemistry 60:61–66

    PubMed  Google Scholar 

  11. Pascual-Villalobos MJ, Rodríguez B (2007) Constituents of Musa balbisiana seeds and their activity against Cryptolestes pusillus. Biochem Syst Ecol 35:11–16

    CAS  Google Scholar 

  12. Tamura KT (1998) Cycloartane triterpenes from the fruit peel of Musa sapientum. Phytochemistry (Oxford) 47:1107

    Google Scholar 

  13. Hsiao S-T, Chuang S-C, Chen K-S, Ho P-H, Wu C-L, Chen CA (2016) DNA barcoding reveals that the common cupped oyster in Taiwan is the Portuguese oyster Crassostrea angulata (Ostreoida; Ostreidae), not C. gigas. Sci Rep 6:34057

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiao J, Huang W, Bai Z, Liu F, Ma C, Liang Z (2018) DNA barcoding for the efficient and accurate identification of medicinal polygonati rhizoma in China. PLoS ONE 13:e0201015

    PubMed  PubMed Central  Google Scholar 

  15. Batnini MA, Bourguiba H, Trifi-Farah N, Krichen L (2019) Molecular diversity and phylogeny of Tunisian Prunus armeniaca L. by evaluating three candidate barcodes of the chloroplast genome. Sci Hortic 245:99–106

    CAS  Google Scholar 

  16. He P, Ma Q, Dong M, Yang Z, Liu L (2019) The complete chloroplast genome of Leontice incerta and phylogeny of Berberidaceae. Mitochondrial DNA Part B 4:101–102

    Google Scholar 

  17. Terakami S, Matsumura Y, Kurita K, Kanamori H, Katayose Y, Yamamoto T, Katayama H (2012) Complete sequence of the chloroplast genome from pear (Pyrus pyrifolia): genome structure and comparative analysis. Tree Genet Genomes 8:841–854

    Google Scholar 

  18. Xue S, Shi T, Luo W, Ni X, Iqbal S, Ni Z, Huang X, Yao D, Shen Z, Gao Z (2019) Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Hortic Res 6:89

    PubMed  PubMed Central  Google Scholar 

  19. Xu DH, Abe J, Kanazawa A, Gai JY, Shimamoto Y (2001) Identification of sequence variations by PCR-RFLP and its application to the evaluation of cpDNA diversity in wild and cultivated soybeans. Theor Appl Genet 102:683–688

    CAS  Google Scholar 

  20. Kress W, Erickson D (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:e508

    PubMed  PubMed Central  Google Scholar 

  21. Hollingsworth ML, Andra Clark A, Forrest LL, Richardson J, Pennington RT, Long DG, Cowan R, Chase MW, Gaudeul M, Hollingsworth PM (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour 9:439–457

    CAS  PubMed  Google Scholar 

  22. Henriquez CL, Abdullah AI, Carlsen MM, Zuluaga A, Croat TB, McKain MR (2020) Evolutionary dynamics of chloroplast genomes in subfamily Aroideae (Araceae). Genomics 112:2349–2360

    CAS  PubMed  Google Scholar 

  23. Doyle J, Doyle JL (1986) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19

  24. Dierckxsens N, Mardulyn P, Smits G (2016) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw955

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chang L, Linchun S, Yingjie Z, Haimei C (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13:1–7

    Google Scholar 

  26. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics (Oxford, England) 20:3252–3255

    CAS  Google Scholar 

  27. Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. https://doi.org/10.1093/nar/gkt289

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinform 8:77–80

    CAS  Google Scholar 

  29. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, Batzoglou S (2003) Glocal alignment: finding rearrangements during alignment. Bioinformatics (Oxford, England) 19(Suppl 1):i54-62

    Google Scholar 

  31. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:W273-279

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    CAS  PubMed  Google Scholar 

  33. Zhang Y-Y, Liu F, Tian N, Che J-R, Sun X-L, Lai Z-X, Cheng C-Z (2019) Characterization of the complete chloroplast genome of sanming wild banana (Musa itinerans) and phylogenetic relationships. Mitochondrial DNA Part B 4:2614–2616

    PubMed  PubMed Central  Google Scholar 

  34. Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665

    CAS  PubMed  Google Scholar 

  35. Saina JK, Gichira AW, Li Z-Z, Hu G-W, Wang Q-F, Liao K (2018) The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses. Genetica 146:101–113

    CAS  PubMed  Google Scholar 

  36. Wang Z, Miao H, Liu J, Xu B, Yao X, Xu C, Zhao S, Fang X, Jia C, Wang J, Zhang J, Li J, Xu Y, Wang J, Ma W, Wu Z, Yu L, Yang Y, Liu C, Guo Y, Sun S, Baurens F-C, Martin G, Salmon F, Garsmeur O, Yahiaoui N, Hervouet C, Rouard M, Laboureau N, Habas R, Ricci S, Peng M, Guo A, Xie J, Li Y, Ding Z, Yan Y, Tie W, D’Hont A, Hu W, Jin Z (2019) Musa balbisiana genome reveals subgenome evolution and functional divergence. Nature Plants 5:810–821

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Niu Y-F, Gao C-W, Liu J (2018) The complete chloroplast genome sequence of wild banana, Musa balbisiana variety ’Pisang Klutuk Wulung’ (Musaceae). Mitochondrial DNA Part B 3:460–461

    PubMed  PubMed Central  Google Scholar 

  38. Liu J, Gao C-W, Niu Y-F (2019) Complete chloroplast genome sequence of Musa banksii and its phylogenetic analysis. Mitochondrial DNA Part B 4:789–790

    Google Scholar 

  39. Munir A, Mehmood A, Azam S (2016) Structural and Function Prediction of Musa acuminata subsp. Malaccensis protein. Int J Bioautomotion 20:19–30

    CAS  Google Scholar 

  40. Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16:6095–6104

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ivanova Z, Sablok G, Daskalova E, Zahmanova G, Apostolova E, Yahubyan G, Baev V (2017) Chloroplast genome analysis of resurrection tertiary relict Haberlea rhodopensis highlights genes important for desiccation stress response. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00204

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shen X, Wu M, Liao B, Liu Z, Bai R, Xiao S, Li X, Zhang B, Xu J, Chen S (2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules (Basel, Switzerland). https://doi.org/10.3390/molecules22081330

    Article  PubMed Central  Google Scholar 

  43. Xie DF, Yu Y, Deng YQ, Li J, Liu HY, Zhou SD, He XJ (2018) Comparative analysis of the chloroplast genomes of the Chinese endemic genus Urophysa and their contribution to chloroplast phylogeny and adaptive evolution. Int J Mol Sci. https://doi.org/10.3390/ijms19071847

    Article  PubMed  PubMed Central  Google Scholar 

  44. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Doose D, Grand C, Lesire C (2017) MAUVE runtime: a component-based middleware to reconfigure software architectures in real-time. In 2017 First IEEE International Conference on Robotic Computing (IRC), 10 Apr 2017 pp 208–211. IEEE

  46. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu C, Dong W, Li W, Lu Y, Xie X, Jin X, Shi J, He K, Suo Z (2017) Comparative analysis of six lagerstroemia complete chloroplast genomes. Front Plant Sci 8:15

    PubMed  PubMed Central  Google Scholar 

  48. Katoh K, Standley D (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    CAS  Google Scholar 

  50. Liu L-X, Li R, Worth JRP, Li X, Li P, Cameron KM, Fu C-X (2017) The complete chloroplast genome of Chinese bayberry (Morella rubra, Myricaceae) implications for understanding the evolution of fagales. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00968

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Start-up Foundation of Introducing Talents for Scientific Research, Nanjing Institute of Industry Technology (Grant No. 201050619YK701), and Nanjing Forestry University foundation (Grant No. 163108059).

Author information

Authors and Affiliations

Authors

Contributions

FL: Conceptualization, software, formal analysis, writing—original draft, visualization, and project administration; AM: Writing—review & editing, visualization, supervision, and funding acquisition; WT: Validation, writing—review & editing, visualization, supervision, and funding acquisition; DX: Review & editing, and data curation; CJ: Review & editing, and data curation; JX: Review & editing, and data curation; YZ: Review &editing, and data curation.

Corresponding authors

Correspondence to Ali Movahedi or Wenguo Yang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research Square has already preprinted this manuscript with a Doi: 10.21203/rs.3.rs-531360/v1 and License: This work is licensed under a CCBY 4.0 License.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Movahedi, A., Yang, W. et al. The complete chloroplast genome and characteristics analysis of Musa basjoo Siebold. Mol Biol Rep 48, 7113–7125 (2021). https://doi.org/10.1007/s11033-021-06702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06702-5

Keywords

Navigation