Skip to main content

Advertisement

Log in

Effect of Pt catalyst on the sensor performance of WO\(_3\) nanoflakes towards hazardous gases

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nobel metal functionalized chemiresistive type metal-oxide sensors were fabricated and tested against hazardous gases such as acetone, ethanol, hydrogen sulfide, hydrogen cyanide and dimethyl methylphosphonate. WO\(_3\) nanoflakes (NFs) were fabricated on Al\(_2\)O\(_3\) substrates by a facile hydrothermal route. 2D nanoflakes randomly aligned and uniformly covered on the substrate surface, and the thickness of the NFs were found approximately 100 nm. Then, Pt was loaded on WO\(_3\) nanoflakes by RF sputtering method. According to the sensor tests, Pt modification tremendously improved the sensor performance of nanoflakes against acetone gas in terms of sensor response, selectivity among the measured gases and operation temperature. The spillover effect of Pt increased the sensing response and the sensor was able to selectively detect acetone with 237 particle per billion (ppb) at operation temperature of 250 \(^{\circ }\)C. Pt functionalization suppresses the sensor responses of NFs against gases (ethanol, hydrogen sulfide, hydrogen cyanide and dimethyl methylphosphonate) other than acetone. While pristine NFs sensor was able to sense these gases at low temperatures, Pt-functionalized WO\(_3\) NFs did not sense at temperatures lower than 200 \(^{\circ }\)C by giving rise to the selectivity of the sensor against acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Rydosz, A. Brudnik, K. Staszek, Materials 12(6), 877 (2019). https://doi.org/10.3390/ma12060877

    Article  CAS  Google Scholar 

  2. S. Zhang, M. Yang, K. Liang, A. Turak, B. Zhang, D. Meng, C. Wang, F. Qu, W. Cheng, M. Yang, Sens. Actuators B Chem. 290, 59 (2019). https://doi.org/10.1016/j.snb.2019.03.082

    Article  CAS  Google Scholar 

  3. V. Amiri, H. Roshan, A. Mirzaei, G. Neri, A.I. Ayesh, Sensors 20, 11 (2020)

    Article  Google Scholar 

  4. V.M. Aroutiounian, J. Contemp. Phys. (Armen. Acad. Sci.) 55(3), 213 (2020). https://doi.org/10.3103/s1068337220030056

    Article  CAS  Google Scholar 

  5. M. Šetka, F.A. Bahos, D. Matatagui, I. Gràcia, E. Figueras, J. Drbohlavová, S. Vallejos, Sensors 20(5), 1432 (2020). https://doi.org/10.3390/s20051432

    Article  CAS  Google Scholar 

  6. A. Dey, Mater. Sci. Eng. B 229, 206 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  CAS  Google Scholar 

  7. D. Zappa, V. Galstyan, N. Kaur, H.M.M. Arachchige, O. Sisman, E. Comini, Anal. Chim. Acta 1039, 1 (2018). https://doi.org/10.1016/j.aca.2018.09.020

    Article  CAS  Google Scholar 

  8. G. Korotcenkov, B. Cho, Sens. Actuators B Chem. 244, 182 (2017). https://doi.org/10.1016/j.snb.2016.12.117

    Article  CAS  Google Scholar 

  9. Y.K. Moon, S.Y. Jeong, Y.C. Kang, J.H. Lee, ACS Appl. Mater. Interfaces 11(35), 32169 (2019). https://doi.org/10.1021/acsami.9b11079

    Article  CAS  Google Scholar 

  10. M. Wu, S. Hou, X. Yu, J. Yu, J. Mater. Chem. C 8(39), 13482 (2020). https://doi.org/10.1039/d0tc03132a

    Article  CAS  Google Scholar 

  11. M. Shekhirev, A. Lipatov, A. Torres, N.S. Vorobeva, A. Harkleroad, A. Lashkov, V. Sysoev, A. Sinitskii, ACS Appl. Mater. Interfaces 12(6), 7392 (2020). https://doi.org/10.1021/acsami.9b13946

    Article  CAS  Google Scholar 

  12. P.W. Sayyad, S.S. Khan, N.N. Ingle, G.A. Bodkhe, T. Al-Gahouari, M.M. Mahadik, S.M. Shirsat, M.D. Shirsat, Appl. Phys. A 126, 11 (2020). https://doi.org/10.1007/s00339-020-04053-9

    Article  CAS  Google Scholar 

  13. W.T. Koo, S.J. Choi, S.J. Kim, J.S. Jang, H.L. Tuller, I.D. Kim, J. Am. Chem. Soc. 138(40), 13431 (2016). https://doi.org/10.1021/jacs.6b09167

    Article  CAS  Google Scholar 

  14. R. Kumar, N. Goel, M. Hojamberdiev, M. Kumar, Sens. Actuators A Phys. 303, 111875 (2020). https://doi.org/10.1016/j.sna.2020.111875

    Article  CAS  Google Scholar 

  15. L. Hou, C. Zhang, L. Li, C. Du, X. Li, X.F. Kang, W. Chen, Talanta 188, 41 (2018). https://doi.org/10.1016/j.talanta.2018.05.059

    Article  CAS  Google Scholar 

  16. S.M. Mane, A.R. Nimbalkar, J.S. Go, N.B. Patil, S.S. Dhasade, J.V. Thombare, A.S. Burungale, J.C. Shin, Appl. Phys. A 127, 1 (2021). https://doi.org/10.1007/s00339-020-04152-7

    Article  CAS  Google Scholar 

  17. T. Lin, X. Lv, Z. Hu, A. Xu, C. Feng, Sensors 19(2), 233 (2019). https://doi.org/10.3390/s19020233

    Article  CAS  Google Scholar 

  18. Y. Chen, Z. Dong, X. Xue, S. Chen, A. Natan, Y. Lv, C. Chen, Y. Yang, W. Cen, Y. Yang, Appl. Phys. A 126, 4 (2020). https://doi.org/10.1007/s00339-020-03478-6

    Article  CAS  Google Scholar 

  19. A. Mirzaei, S. Leonardi, G. Neri, Ceram. Int. 42(14), 15119 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  CAS  Google Scholar 

  20. W. Liu, Y. Xie, T. Chen, Q. Lu, S.U. Rehman, L. Zhu, Sens. Actuators B Chem. 298, 126871 (2019). https://doi.org/10.1016/j.snb.2019.126871

    Article  CAS  Google Scholar 

  21. S.Y. Cho, H.W. Yoo, J.Y. Kim, W.B. Jung, M.L. Jin, J.S. Kim, H.J. Jeon, H.T. Jung, Nano Lett. 16(7), 4508 (2016). https://doi.org/10.1021/acs.nanolett.6b01713

    Article  CAS  Google Scholar 

  22. M. Berouaken, L. Talbi, C. Yaddadene, M. Maoudj, H. Menari, R. Alkama, N. Gabouze, Appl. Phys. A 126, 12 (2020). https://doi.org/10.1007/s00339-020-04129-6

    Article  CAS  Google Scholar 

  23. N. Barsan, D. Koziej, U. Weimar, Sens. Actuators B Chem. 121(1), 18 (2007). Special Issue: 25th Anniversary of Sensors and Actuators B: Chemical

  24. D. Degler, U. Weimar, N. Barsan, ACS Sens. 4(9), 2228 (2019). https://doi.org/10.1021/acssensors.9b00975

    Article  CAS  Google Scholar 

  25. M. Yang, S. Zhang, F. Qu, S. Gong, C. Wang, L. Qiu, M. Yang, W. Cheng, J. Alloys Compd. 797, 246 (2019). https://doi.org/10.1016/j.jallcom.2019.05.101

    Article  CAS  Google Scholar 

  26. S.J. Choi, I. Lee, B.H. Jang, D.Y. Youn, W.H. Ryu, C.O. Park, I.D. Kim, Anal. Chem. 85(3), 1792 (2013). https://doi.org/10.1021/ac303148a

    Article  CAS  Google Scholar 

  27. S. Büyükköse, Mater. Sci. Semicond. Process. 110, 104969 (2020). https://doi.org/10.1016/j.mssp.2020.104969

    Article  CAS  Google Scholar 

  28. N. Sarıca, O. Alev, L.Ç. Arslan, Z.Z. Öztürk, Thin Solid Films 685, 321 (2019). https://doi.org/10.1016/j.tsf.2019.06.046

    Article  CAS  Google Scholar 

  29. Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, G. Lu, Sens. Actuators B Chem. 238, 473 (2017). https://doi.org/10.1016/j.snb.2016.07.085

    Article  CAS  Google Scholar 

  30. G. Halek, I. Baikie, H. Teterycz, P. Halek, P. Suchorska-Woźniak, K. Wiśniewski, Sens. Actuators B Chem. 187, 379 (2013). https://doi.org/10.1016/j.snb.2012.12.062. Selected Papers from the 14th International Meeting on Chemical Sensors

  31. S.J. Choi, K.H. Ku, B.J. Kim, I.D. Kim, ACS Sens. 1(9), 1124 (2016). https://doi.org/10.1021/acssensors.6b00422

    Article  CAS  Google Scholar 

  32. A. Koo, R. Yoo, S.P. Woo, H.S. Lee, W. Lee, Sens. Actuators B Chem. 280, 109 (2019). https://doi.org/10.1016/j.snb.2018.10.049

    Article  CAS  Google Scholar 

  33. C.Y. Chi, H.I. Chen, W.C. Chen, C.H. Chang, W.C. Liu, Sens. Actuators B Chem. 255, 3017 (2018). https://doi.org/10.1016/j.snb.2017.09.125

    Article  CAS  Google Scholar 

  34. C. Liu, Q. Kuang, Z. Xie, L. Zheng, CrystEngComm 17(33), 6308 (2015). https://doi.org/10.1039/c5ce01162k

    Article  CAS  Google Scholar 

  35. Y. Li, Z. Hua, Y. Wu, Y. Zeng, Z. Qiu, X. Tian, M. Wang, E. Li, Sens. Actuators B Chem. 265, 249 (2018). https://doi.org/10.1016/j.snb.2018.03.037

    Article  CAS  Google Scholar 

  36. H.I. Chen, C.Y. Chi, W.C. Chen, I.P. Liu, C.H. Chang, T.C. Chou, W.C. Liu, Sens. Actuators B Chem. 267, 145 (2018). https://doi.org/10.1016/j.snb.2018.04.019

    Article  CAS  Google Scholar 

  37. M. Masikini, M. Chowdhury, O. Nemraoui, J. Electrochem. Soc. 167(3), 037537 (2020). https://doi.org/10.1149/1945-7111/ab64bc

    Article  CAS  Google Scholar 

  38. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10(3), 2088 (2010). https://doi.org/10.3390/s100302088

    Article  CAS  Google Scholar 

  39. Y. Xu, C. Lou, L. Zheng, W. Zheng, X. Liu, M. Kumar, J. Zhang, Sens. Actuators B Chem. 307, 127616 (2020). https://doi.org/10.1016/j.snb.2019.127616

    Article  CAS  Google Scholar 

  40. L. Wang, P. Gao, D. Bao, Y. Wang, Y. Chen, C. Chang, G. Li, P. Yang, Cryst. Growth Des. 14(2), 569 (2014). https://doi.org/10.1021/cg401384t

    Article  CAS  Google Scholar 

  41. A.K. Nayak, R. Ghosh, S. Santra, P.K. Guha, D. Pradhan, Nanoscale 7(29), 12460 (2015). https://doi.org/10.1039/c5nr02571k

    Article  CAS  Google Scholar 

  42. L. Guo, F. Chen, N. Xie, X. Kou, C. Wang, Y. Sun, F. Liu, X. Liang, Y. Gao, X. Yan, T. Zhang, G. Lu, Sens. Actuators B Chem. 272, 185 (2018). https://doi.org/10.1016/j.snb.2018.05.161

    Article  CAS  Google Scholar 

  43. S. Wang, J. Cao, W. Cui, L. Fan, X. Li, D. Li, T. Zhang, Sens. Actuators B Chem. 297, 126746 (2019). https://doi.org/10.1016/j.snb.2019.126746

    Article  CAS  Google Scholar 

  44. E. Wongrat, N. Chanlek, C. Chueaiarrom, W. Thupthimchun, B. Samransuksamer, S. Choopun, Ceram. Int. 43, S557 (2017). https://doi.org/10.1016/j.ceramint.2017.05.296

    Article  CAS  Google Scholar 

  45. S. Liang, J. Li, F. Wang, J. Qin, X. Lai, X. Jiang, Sens. Actuators B Chem. 238, 923 (2017). https://doi.org/10.1016/j.snb.2016.06.144

    Article  CAS  Google Scholar 

  46. X. Fan, Y. Xu, C. Ma, W. He, J. Alloys Compd. 854, 157234 (2021). https://doi.org/10.1016/j.jallcom.2020.157234

    Article  CAS  Google Scholar 

  47. Y.J. Jeong, W.T. Koo, J.S. Jang, D.H. Kim, H.J. Cho, I.D. Kim, Nanoscale 10(28), 13713 (2018). https://doi.org/10.1039/c8nr03242d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Dr. Leyla Çolakerol Arslan for XPS work. This research was performed within the 2018-A105-42 Project financed by the Scientific Research Project Committee of Gebze Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Büyükköse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alev, O., Büyükköse, S. Effect of Pt catalyst on the sensor performance of WO\(_3\) nanoflakes towards hazardous gases. J Mater Sci: Mater Electron 32, 25376–25384 (2021). https://doi.org/10.1007/s10854-021-06997-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06997-x

Navigation