Skip to main content

Advertisement

Log in

Fe-doping as a universal phase boundary shifter for BCZT ceramics across the morphotropic phase boundary

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

y mol% Fe-doped Ba(Zr0.2Ti0.8)O3x mol%(Ba0.7Ca0.3)TiO3 (abbreviated as yFe:BCZTx) ferroelectric ceramics with y = 0, 0.375, 0.75, and 1.5 across the morphotropic phase boundary (MPB) with x = 44 and 56 were fabricated via conventional solid state reaction methods. Fe incorporated into the lattice and all the yFe:BCZTx ceramics showed pure perovskite structure. Fe-doping can significantly reduce the grain sizes and shift the tetragonal-cubic phase boundary toward lower temperature for all the investigated compositions across the MPB. A moderate enhancement of frequency dispersion on the dielectric constant was observed. The temperature dependent dielectric constant was analyzed according to modified Curie–Weiss law and the diffuse factor increased with increasing Fe-doping content. Relaxor-like slim polarization–electric field (P-E) loops were obtained for all BCZTx ceramics after Fe-doping. 1.5Fe:BCZTx ceramics shows almost hysteresis free P-E loops without obvious fatigue behavior after 10,000 cycles. The recoverable energy storage efficiency was significantly enhanced in 1.5Fe:BCZTx ceramics with good temperature stability. Our results indicate Fe-doping can be used as a universal phase boundary shifter and to increase energy storage efficiency for BCZT ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  2. A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Anti-Ferroelectric Ceramics for High Energy Density Capacitors. Materials 8(12), 8009–8031 (2015)

    Article  Google Scholar 

  3. K. Singh, Antiferroelectric lead zirconate, a material for energy storage. Ferroelectrics 94(1), 433–533 (1989)

    Article  Google Scholar 

  4. X. Chen, F. Cao, H. Zhang, G. Yu, G. Wang, X. Dong, Y. Gu, H. He, Y. Liu, Dynamic Hysteresis and Scaling Behavior of Energy Density in Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3 Antiferroelectric Bulk Ceramics. J. Am. Ceram. Soc. 95(4), 1163–1166 (2012)

    Article  CAS  Google Scholar 

  5. X. Hao, P. Wang, X. Zhang, J. Xu, Microstructure and energy-storage performance of PbO–B2O3–SiO2–ZnO glass added (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thick films. Mater. Res. Bull. 48(1), 84–88 (2013)

    Article  CAS  Google Scholar 

  6. Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D. O. Alikin, V. Y. Shur, Y. Feng, Z. Xu, and X. Wei, "Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction". Nano. Energy. 67, 104264 (2020)

  7. F. Li, X. Hou, T. Li, R. Si, C. Wang, J. Zhai, Fine-grain induced outstanding energy storage performance in novel Bi0.5K0.5TiO3–Ba(Mg1/3Nb2/3)O3 ceramics via a hot-pressing strategy. J. Mater. Chem. C. 7(39), 12127–12138 (2019)

    Article  CAS  Google Scholar 

  8. M. Benyoussef, J. Belhadi, A. Lahmar, M. El Marssi, Tailoring the dielectric and energy storage properties in BaTiO3/BaZrO3 superlattices. Mater. Lett. 234, 279–282 (2019)

    Article  CAS  Google Scholar 

  9. L. Zhao, J. Gao, Q. Liu, S. Zhang, J.F. Li, Silver Niobate Lead-Free Antiferroelectric Ceramics: Enhancing Energy Storage Density by B-Site Doping. ACS. Appl. Mater. Interfaces. 10(1), 819–826 (2018)

    Article  CAS  Google Scholar 

  10. Z. Liang, M. Liu, C. Ma, L. Shen, L. Lu, C.-L. Jia, High-performance BaZr0.35Ti0.65O3 thin film capacitors with ultrahigh energy storage density and excellent thermal stability. J. Mater. Chem. A. 6(26), 12291–12297 (2018)

    Article  CAS  Google Scholar 

  11. T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A. 5(2), 554–563 (2017)

    Article  CAS  Google Scholar 

  12. B. Qu, H. Du, Z. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C. 4(9), 1795–1803 (2016)

    Article  CAS  Google Scholar 

  13. Q. Xu, T. Li, H. Hao, S. Zhang, Z. Wang, M. Cao, Z. Yao, H. Liu, Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 35(2), 545–553 (2015)

    Article  CAS  Google Scholar 

  14. Y. Sun, Y.F. Chang, J. Wu, Y.C. Liu, L. Jin, S.T. Zhang, B. Yang, W.W. Cao, Ultrahigh energy harvesting properties in textured lead-free piezoelectric composites. J. Mater. Chem. A. 7(8), 3603–3611 (2019)

    Article  CAS  Google Scholar 

  15. W. F. Liu and X. B. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics". Physical. Rev. Lett. 103(25), 257602 (2009)

  16. I. Burn, D.M. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7(3), 339–343 (1972)

    Article  CAS  Google Scholar 

  17. Q. Fan, M. Liu, C. Ma, L. Wang, S. Ren, L. Lu, X. Lou, C.-L. Jia, Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano. Energy. 51, 539–545 (2018)

    Article  CAS  Google Scholar 

  18. S. Takahashi, S. Hirose, K. Uchino, Stability of Pzt Piezoelectric Ceramics under Vibration Level Change. J. Am. Ceram. Soc. 77(9), 2429–2432 (1994)

    Article  Google Scholar 

  19. S. Tashiro, M. Ikehiro, and H. Igarashi, "Influence of Temperature Rise and Vibration Level on Electromechanical Properties of High-Power Piezoelectric Ceramics". Japanese. J. Appl. Phys. 36[Part 1, No. 5B], 3004–09 (1997)

  20. S.J. Zhang, L. Lebrun, D.Y. Jeong, C.A. Randall, Q.M. Zhang, T.R. Shrout, Growth and characterization of Fe-doped Pb(Zn1/3Nb2/3)O-3-PbTiO3 single crystals. J. Appl. Phys. 93(11), 9257–9262 (2003)

    Article  CAS  Google Scholar 

  21. Z. Xing, L. Jin, T. Wang, Q. Hu, Y. Feng, X. Wei, Achieving Both High d33 and High Qm for the Pb(Zr0.26Sn0.26Ti0.48)1−xFexO3−x/2 Ternary System for Usein High-Power Ultrasonic Transducers. J. Electron. Mater. 43(11), 3905–3911 (2014)

    Article  CAS  Google Scholar 

  22. S. Priya, K. Uchino, D. Viehland, Fe-substituted 0.92Pb(Zn1/3Nb2/3)O-3-0.08PbTiO(3) single crystals: A “hard” piezocrystal. Appl. Phys. Lett. 81(13), 2430–2432 (2002)

    Article  CAS  Google Scholar 

  23. P. Jaimeewong, S. Sittinon, S. Buntham, P. Bomlai, O. Namsar, S. Pojprapai, and A. Watcharapasorn, "Ferroelectric, Piezoelectric and Dielectric Behaviors of CoO- and Fe2O3-Doped BCZT Ceramics," physica status solidi (a) 215(20), 1701023 (2018)

  24. M. Gao, W. Ge, X. Li, H. Yuan, C. Liu, H. Zhao, Y. Ma, and Y. Chang, "Enhanced Dielectric and Energy Storage Properties in Fe-Doped BCZT Ferroelectric Ceramics". physica status solidi (a) 217(16), 2000253 (2020)

  25. R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. A. 32(5), 751–767 (1976)

    Article  Google Scholar 

  26. S. Tashiro, K. Ishii, Grain size and piezoelectric properties of (Ba, K, Na)NbO3 lead-free ceramics. J. Ceram. Soc. Jpn. 114(1329), 386–391 (2006)

    Article  CAS  Google Scholar 

  27. W. Cao, C.A. Randall, Grain size and domain size relations in bulk ceramic ferroelectric materials. J. Phys. Chem. Solids 57(10), 1499–1505 (1996)

    Article  CAS  Google Scholar 

  28. P. Jaiban, M. Tongtham, P. Wannasut, N. Pisitpipathsin, O. Namsar, N. Chanlek, S. Pojprapai, R. Yimnirun, R. Guo, A.S. Bhalla, A. Watcharapasorn, Phase characteristics, microstructure, and electrical properties of (1–x)BaZr0.2Ti0.8O3-(x)(Ba0.7Ca0.3)0.985La0.01TiO3 ceramics. Ceram. Int. 45(14), 17502–17511 (2019)

    Article  CAS  Google Scholar 

  29. P. Jaiban, P. Wannasut, R. Yimnirun, and A. Watcharapasorn, "Influences of acceptor dopants (Cu, Mg, Fe) on electrical and optical properties of Ba0.7Ca0.3TiO3 ceramics". Mater. Res. Bull. 118, 110501 (2019)

  30. P. Jaiban, A. Watcharapasorn, Effects of Mg doping on electrical properties of Ba0.7Ca0.3TiO3 ceramics. Mater. Today. Commun. 11, 184–190 (2017)

    Article  CAS  Google Scholar 

  31. Z. Sun, C. Ma, M. Liu, J. Cui, L. Lu, J. Lu, X. Lou, L. Jin, H. Wang, and C.-L. Jia, "Ultrahigh Energy Storage Performance of Lead-Free Oxide Multilayer Film Capacitors via Interface Engineering". Adv. Mater. 29(5), 1604427 (2017)

  32. C. Dong, "PowderX: Windows-95-based program for powder X-ray diffraction data processing". J. Appl. Crystallogr. 32(4), 838 (1999)

  33. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76(1), 241–267 (1987)

    Article  CAS  Google Scholar 

  34. P. Jaiban, A. Watcharapasorn, R. Yimnirun, R. Guo, A.S. Bhalla, Dielectric, ferroelectric and piezoelectric properties of (Ba0.7Ca0.3)Ti1-xCuxO3-x ceramics. J. Alloy. Compd. 759, 120–127 (2018)

    Article  CAS  Google Scholar 

  35. G. Burns, F.H. Dacol, Polarization in the cubic phase of BaTIO3. Solid. State. Commun. 42(1), 9–12 (1982)

    Article  CAS  Google Scholar 

  36. G. Burns, F.H. Dacol, Glassy Polarization Behavior in Ferroelectric Compounds Pb(Mg1/3nb2/3)O3 and Pb(Zn1/3nb2/3)O3. Solid. State. Commun. 48(10), 853–856 (1983)

    Article  CAS  Google Scholar 

  37. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, Deviation from Curie-Weiss Behavior in Relaxor Ferroelectrics. Phys. Rev. B 46(13), 8003–8006 (1992)

    Article  CAS  Google Scholar 

  38. D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Dipolar-Glass Model for Lead Magnesium Niobate. Phys. Rev. B 43(10), 8316–8320 (1991)

    Article  CAS  Google Scholar 

  39. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982)

    Article  CAS  Google Scholar 

  40. Q. Tan, J.-F. Li, D. Viehland, Ferroelectric behaviours dominated by mobile and randomly quenched impurities in modified lead zirconatetitanate ceramics. Philos. Mag. Pt. B. 76(1), 59–74 (1997)

    Article  CAS  Google Scholar 

  41. E. Erdem, K. Kiraz, M. Somer, R.-A. Eichel, Size effects in Fe3+-doped PbTiO3 nanocrystals—Formation and orientation of (FeTi′VO) defect-dipoles. J. Eur. Ceram. Soc. 30(2), 289–293 (2010)

    Article  CAS  Google Scholar 

  42. Z. Hanani, S. Merselmiz, D. Mezzane, M. b. Amjoud, A. Bradeško, B. Rožič, M. Lahcini, M. El Marssi, A. V. Ragulya, I. A. Luk'yanchuk, Z. Kutnjak, and M. Gouné, "Thermally-stable high energy storage performances and large electrocaloric effect over a broad temperature span in lead-free BCZT ceramic". RSC. Adv. 10(51), 30746–55 (2020)

  43. S. Merselmiz, Z. Hanani, D. Mezzane, A. G. Razumnaya, M. b. Amjoud, L. Hajji, S. Terenchuk, B. Rožič, I. A. Luk'yanchuk, and Z. Kutnjak, "Thermal-stability of the enhanced piezoelectric, energy storage and electrocaloric properties of a lead-free BCZT ceramic". RSC. Adv. 11(16), 9459–68 (2021)

  44. K. Xu, P. Yang, W. Peng, and L. Li, "Temperature-stable MgO-doped BCZT lead-free ceramics with ultra-high energy storage efficiency". J. Alloy. Compd. 829, 154516 (2020)

Download references

Acknowledgements

We thank Luyao Chen for scanning electron microscopy measurement. This work was supported by the Fundamental Research Funds for the Central Universities JLU under 1018320174002, by the Provincial Natural Science Foundation of Jilin under Grant No. 20200201097JC, and by the National Natural Science Foundation of China under Grants No. 52032012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, W., Gao, M., Wu, C. et al. Fe-doping as a universal phase boundary shifter for BCZT ceramics across the morphotropic phase boundary. J Electroceram 47, 67–78 (2021). https://doi.org/10.1007/s10832-021-00265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00265-4

Keywords

Navigation