Skip to main content

Advertisement

Log in

Health impact assessment from exposure to trace metals present in atmospheric PM10 at Ahmedabad, a big city in western India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Many toxicological studies revealed the deleterious effects on human health induced by trace metals in ambient particulate matter (PM). This study reports the season-dependent water-soluble and total metal mass in PM10 collected simultaneously over five microenvironments in a semi-arid urban region, Ahmedabad, located in western India. The mineral dust fraction in PM10 over Bapunagar, Narol, Paldi, Income Tax, and Science City was estimated to be around 39, 45, 47, 44, and 31% during summer (May–June 2017) and 24, 55, 28, 27, and 28% during winter (December 2017–January 2018), respectively, corroborating mineral dust is perennial in the air over Ahmedabad. The PM2.5/PM10 mass ratios over all the sites were higher during winter (40–60%) as compared to those during summer (30–40%), indicating the contribution from the anthropogenic sources to PM mass. Among the metals monitored, the estimated considerable amount of high masses of Zn, Cu, Ni, Cd, and Sb during winter can be ascribed to the anthropogenic inputs based on the estimated enrichment factors (EF). In contrast to the crustal source, these metals might have been possibly emitted from several other man-made sources, which were found to be more water-soluble during both seasons. As per the standards of incremental excess lifetime cancer risk (IELCR), it is estimated that the atmospheric mass concentration of carcinogenic metals such as Cr, Co, and As was higher in all these sites, whereas the metals such as Pb, Ni, and Cd are also found over the industrial site (Narol) in addition to the above-said metals. Notably, people are highly susceptible to these metals, leading to the potential risk of cancer during both seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  • Aggarwal, A. L., Gargava, P., & Pathak, A. (2010). Conceptual Guidelines and Common Methodology for Air Quality Monitoring, Emission Inventory & Source Apportionment Studies for Indian Cities. Central Pollution Control Board. https://cpcb.nic.in/displaypdf.php

  • Arden Pope, C., & Dockery, D. W. (1999). Epidemiology of particle effects. Air Pollution and Healthhttps://doi.org/10.1016/b978-012352335-8/50106-x

    Article  Google Scholar 

  • Beeson, W. L., Abbey, D. E., & Knutsen, S. F. (1998). Long-term concentrations of ambient air pollutants and incident lung cancer in California adults: Results from the AHSMOG study. Environmental Health Perspectives, 106(12), 813–822. https://doi.org/10.2307/3434125

    Article  CAS  Google Scholar 

  • Bremner, S. A., Anderson, H. R., Atkinson, R. W., McMichael, A. J., Strachan, D. P., Bland, J. M., & Bower, J. S. (1999). Short term associations between outdoor air pollution and mortality in London 1992–4. Occupational and Environmental Medicine, 56(4), 237–244. https://doi.org/10.1136/oem.56.4.237

    Article  CAS  Google Scholar 

  • Bretón, J. G. C., Bretón, R. M. C., Guzman, A. A. E., Guarnaccia, C., Morales, S. M., Severino, R. del C. L., et al. (2019). Trace metal content and health risk assessment of PM10 in an urban environment of León, Mexico. Atmosphere, 10(10). https://doi.org/10.3390/atmos10100573

  • Burnett, R. T., Arden Pope, C., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., et al. (2014). An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environmental Health Perspectives, 122(4), 397–403. https://doi.org/10.1289/ehp.1307049

    Article  Google Scholar 

  • Calderón-Garcidueñas, L., Franco-Lira, M., Henríquez-Roldán, C., Osnaya, N., González-Maciel, A., Reynoso-Robles, R., et al. (2010). Urban air pollution: Influences on olfactory function and pathology in exposed children and young adults. Experimental and Toxicologic Pathology, 62(1), 91–102. https://doi.org/10.1016/j.etp.2009.02.117

    Article  Google Scholar 

  • Chandra Mouli, P., Venkata Mohan, S., Balaram, V., Praveen Kumar, M., & Jayarama Reddy, S. (2006). A study on trace elemental composition of atmospheric aerosols at a semi-arid urban site using ICP-MS technique. Atmospheric Environment, 40(1), 136–146. https://doi.org/10.1016/j.atmosenv.2005.09.028

    Article  CAS  Google Scholar 

  • Charrier, J. G., & Anastasio, C. (2012). On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble transition metals. Atmospheric Chemistry and Physics Discussions, 12(5), 11317–11350. https://doi.org/10.5194/acpd-12-11317-2012

    Article  CAS  Google Scholar 

  • Chen, M., Zhang, H., Liu, W., & Zhang, W. (2014). The global pattern of urbanization and economic growth: Evidence from the last three decades. PLoS ONE, 9(8). https://doi.org/10.1371/journal.pone.0103799

  • Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P. K., Webster, R. D., & Wang, X. (2015). Trace element composition of PM2.5 and PM10 from Kolkata – a heavily polluted Indian metropolis. Atmospheric Pollution Research, 6(5), 742–750. https://doi.org/10.5094/APR.2015.083

  • Demography. (2020). Ahmedabad District, Government of Gujarat | India, 2020. https://ahmedabad.nic.in/demography/

  • Dubey, B., Pal, A. K., & Singh, G. (2012). Trace metal composition of airborne particulate matter in the coal mining and non-mining areas of Dhanbad region, Jharkhand. India. Atmospheric Pollution Research, 3(2), 238–246. https://doi.org/10.5094/APR.2012.026

    Article  CAS  Google Scholar 

  • Fenton. (1894). Oxidation of tartaric acid in presence of iron.

  • Fomba, K. W., Van Pinxteren, D., Müller, K., Iinuma, Y., Lee, T., Collett, J. L., & Herrmann, H. (2015). Trace metal characterization of aerosol particles and cloud water during HCCT 2010. Atmospheric Chemistry and Physics, 15(15), 8751–8765. https://doi.org/10.5194/acp-15-8751-2015

    Article  CAS  Google Scholar 

  • Gaonkar, C. V., Kumar, A., Matta, V. M., & Kurian, S. (2020). Assessment of crustal element and trace metal concentrations in atmospheric particulate matter over a coastal city in the Eastern Arabian Sea. Journal of the Air and Waste Management Association, 70(1), 78–92. https://doi.org/10.1080/10962247.2019.1680458

    Article  CAS  Google Scholar 

  • Haber, F., Weiss, J., & A, P. R. S. L. (1934). The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 147(861), 332–351. https://doi.org/10.1098/rspa.1934.0221

  • Idani, E., Geravandi, S., Akhzari, M., Goudarzi, G., Alavi, N., Yari, A. R., et al. (2020). Characteristics, sources, and health risks of atmospheric PM10-bound heavy metals in a populated middle eastern city. Toxin Reviews, 39(3), 266–274. https://doi.org/10.1080/15569543.2018.1513034

    Article  CAS  Google Scholar 

  • Jaiswal, N. K., Ramteke, S., Patel, K. S., Saathoff, H., Nava, S., Lucarelli, F., et al. (2019). Winter particulate pollution over Raipur, India. Journal of Hazardous, Toxic, and Radioactive Waste, 23(4), 05019001. https://doi.org/10.1061/(asce)hz.2153-5515.0000444

    Article  CAS  Google Scholar 

  • Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, C., Brooks, N., et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718), 67–71. https://doi.org/10.1126/science.1105959

    Article  CAS  Google Scholar 

  • Kumar, P., Gurjar, B. R., Nagpure, A. S., & Harrison, R. M. (2011). Preliminary estimates of nanoparticle number emissions from road vehicles in megacity Delhi and associated health impacts. Environmental Science and Technology, 45(13), 5514–5521. https://doi.org/10.1021/es2003183

    Article  CAS  Google Scholar 

  • Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B. & Boden, T. A. (2018). Global Carbon Budget 2018 (pre-print). Earth System Science Data Discuss 1-54.

  • Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., et al. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives, 111(4), 455–460. https://doi.org/10.1289/ehp.6000

    Article  CAS  Google Scholar 

  • Lim, Y. B., & Ziemann, P. J. (2005). Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx. Environmental Science and Technology, 39(23), 9229–9236. https://doi.org/10.1021/jp058024l

    Article  CAS  Google Scholar 

  • Maher, B. A., Ahmed, I. A. M., Karloukovski, V., MacLaren, D. A., Foulds, P. G., Allsop, D., et al. (2016). Magnetite pollution nanoparticles in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 113(39), 10797–10801. https://doi.org/10.1073/pnas.1605941113

    Article  CAS  Google Scholar 

  • Marlier, M. E., Jina, A. S., Kinney, P. L., & DeFries, R. S. (2016). Extreme air pollution in global megacities. Current Climate Change Reports, 2(1), 15–27. https://doi.org/10.1007/s40641-016-0032-z

    Article  Google Scholar 

  • McLennan, S. M. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems, 2(2). https://doi.org/10.1180/minmag.1998.62a.2.182

  • Means, B. (1989). Risk-assessment guidance for superfund. Volume 1. Human health evaluation manual. Part A. Interim report (Final) (No. PB-90-155581/XAB; EPA-540/1-89/002). Environmental Protection Agency, Washington, DC (USA). Office of Solid Waste and Emergency Response.

  • MSME. (2011). Brief industrial profile of AHMEDABAD District, Government of India, Ministry of MSME, (079).

  • National Ambient Air Quality Standards (NAAQS). (2011). Monitoring & Analysis Guidelines. Central Pollution Control Board, India. Guidelines for the Measurement of Ambient Air Pollutants, 1. http://www.cpcb.nic.in

  • Ostro, B. D., Broadwin, R., & Lipsett, M. J. (2000). Coarse and fine particles and daily mortality in the Coachella Valley, California: A follow-up study. Journal of Exposure Analysis and Environmental Epidemiology, 10(5), 412–419. https://doi.org/10.1038/sj.jea.7500094

    Article  CAS  Google Scholar 

  • Patel, A., Rastogi, N., Gandhi, U., & Khatri, N. (2020). Oxidative potential of atmospheric PM10 at five different sites of Ahmedabad, a big city in Western India. Environmental Pollution, 268, 115909. https://doi.org/10.1016/j.envpol.2020.115909

    Article  CAS  Google Scholar 

  • Paulino, D. A. S., Oliveira, R. L., Loyola, J., Minho, A. S., Arbilla, G., Quiterio, S. L., & Escaleira, V. (2014). Trace metals in PM10 and PM2.5 samples collected in a highly industrialized chemical/petrochemical area and its urbanized surroundings. Bulletin of Environmental Contamination and Toxicology, 92(5), 590–595. https://doi.org/10.1007/s00128-014-1219-4

  • Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association, 287(9), 1132–1141. https://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.287.9.1132

  • Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie - International Edition, 44(46), 7520–7540. https://doi.org/10.1002/anie.200501122

    Article  CAS  Google Scholar 

  • Qi, L., Chen, M., Ge, X., Zhang, Y., & Guo, B. (2016). Seasonal variations and sources of 17 aerosol metal elements in suburban Nanjing. China. Atmosphere, 7(12), 1–21. https://doi.org/10.3390/atmos7120153

    Article  Google Scholar 

  • Rai, P., Furger, M., El Haddad, I., Kumar, V., Wang, L., Singh, A., et al. (2020). Real-time measurement and source apportionment of elements in Delhi’s atmosphere. Science of the Total Environment, 742, 140332. https://doi.org/10.1016/j.scitotenv.2020.140332

    Article  CAS  Google Scholar 

  • Rastogi, N., & Sarin, M. M. (2005). Chemical characteristics of individual rain events from a semi-arid region in India: Three-year study. Atmospheric Environment, 39(18), 3313–3323. https://doi.org/10.1016/j.atmosenv.2005.01.053

    Article  CAS  Google Scholar 

  • Rastogi, N., & Sarin, M. M. (2006). Chemistry of aerosols over a semi-arid region: Evidence for acid neutralization by mineral dust. Geophysical Research Letters, 33(23), 10–13. https://doi.org/10.1029/2006GL027708

    Article  CAS  Google Scholar 

  • Rastogi, N., & Sarin, M. M. (2009). Quantitative chemical composition and characteristics of aerosols over western India: One-year record of temporal variability. Atmospheric Environment, 43(22–23), 3481–3488. https://doi.org/10.1016/j.atmosenv.2009.04.030

    Article  CAS  Google Scholar 

  • Roy, R., Jan, R., Yadav, S., Vasave, M. H., & Gursumeeran Satsangi, P. (2016). Study of metals in radical-mediated toxicity of particulate matter in indoor environments of Pune, India. Air Quality, Atmosphere and Health, 9(6), 669–680. https://doi.org/10.1007/s11869-015-0376-x

    Article  CAS  Google Scholar 

  • Schwartz, J., & Morris, R. (1995). Air pollution and hospital admissions for cardiovascular disease in detroit. Michigan. American Journal of Epidemiology, 142(1), 23–35. https://doi.org/10.1093/oxfordjournals.aje.a117541

    Article  CAS  Google Scholar 

  • Shi, T., Knaapen, A. M., Begerow, J., Birmili, W., Borm, P. J. A., & Schins, R. P. F. (2003). Temporal variation of hydroxyl radical generation and 8-hydroxy-2′-deoxyguanosine formation by coarse and fine particulate matter. Occupational and Environmental Medicine, 60(5), 315–321. https://doi.org/10.1136/oem.60.5.315

    Article  CAS  Google Scholar 

  • Srinivas, B., Sarin, M. M., & Kumar, A. (2012). Impact of anthropogenic sources on aerosol iron solubility over the Bay of Bengal and the Arabian Sea. Biogeochemistry, 110(1–3), 257–268. https://doi.org/10.1007/s10533-011-9680-1

    Article  CAS  Google Scholar 

  • Sudheer, A. K., & Rengarajan, R. (2012). Atmospheric mineral dust and trace metals over urban environment in western India during winter. Aerosol and Air Quality Research, 12(5), 923–933. https://doi.org/10.4209/aaqr.2011.12.0237

    Article  CAS  Google Scholar 

  • Sunda, W. G. (1989). Trace metal interactions with marine phytoplankton. Biological Oceanography, 6(5–6), 411–442. https://doi.org/10.1080/01965581.1988.10749543

    Article  Google Scholar 

  • Suvarapu, L. N., & Baek, S. O. (2016). Determination of heavy metals in the ambient atmosphere: A review. Toxicology and Industrial Health, 33(1), 79–96. https://doi.org/10.1177/0748233716654827

    Article  CAS  Google Scholar 

  • United Nations. (2018). The world’s cities in 2018. The World’s Cities in 2018 - Data Booklet (ST/ESA/ SER.A/417), 34.

  • Visser, S., Slowik, J. G., Furger, M., Zotter, P., Bukowiecki, N., Canonaco, F., et al. (2015). Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter. Atmospheric Chemistry and Physics, 15(19), 11291–11309. https://doi.org/10.5194/acp-15-11291-2015

    Article  CAS  Google Scholar 

  • Wang, L., Khalizov, A. F., Zheng, J., Xu, W., Ma, Y., Lal, V., & Zhang, R. (2010). Atmospheric nanoparticles formed from heterogeneous reactions of organics. Nature Geoscience, 3(4), 238–242. https://doi.org/10.1038/ngeo778

    Article  CAS  Google Scholar 

  • WHO. (2016). WHO’s Urban Ambient Air Pollution database - Update 2016. https://www.who.int/

Download references

Funding

This study was funded by the Forests and Environment Department, Government of Gujarat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitasha Khatri.

Ethics declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, U., Khatri, N., Brahmbhatt, V. et al. Health impact assessment from exposure to trace metals present in atmospheric PM10 at Ahmedabad, a big city in western India. Environ Monit Assess 193, 663 (2021). https://doi.org/10.1007/s10661-021-09452-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09452-w

Keywords

Navigation