Skip to main content
Log in

Combined biostimulation and bioaugmentation for chlorpyrifos degradation in laboratory microcosms

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Chlorpyrifos (CP) is a persistent organophosphorus pesticide (OP) used in soil ecosystem for insect control. Bioremediation process has been proven promising in degrading these toxic molecules and restoring the physio-chemical properties of soil. This work reports a laboratory microcosm study in both non-sterile & sterile conditions, conducted over a period of 56 days to examine the combined effect of additional supplements like biostimulants (BSs) such as N, P, and K in the presence of suitable carrier materials (compost, wheat straw, and corncob) along with bioaugmentation by a Ochrobactrum sp. CPD-03 on CP degradation from the contaminated soil. CP degradation was thoroughly monitored at an interval of 7 days over a period of 56 days. Results showed biostimulation and bioaugmentation along with compost as carrier material had shown higher CP degradation efficiency of 76 ± 2.8 and 74 ± 1.6% in non-sterile and sterile microcosms over a period of 56 days. Moreover, bacterial community profiling (16s rRNA and opd gene) demonstrated increased microbial counts, corroborating the efficiency of the bioremediation process. The survival of CPD-03 at the end of the assay validated its ability of colonizing modified soils. By this integrated method with compost as carrier material, bioremediation process could be enhanced for restoration CP-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abed RM, Al-Kharusi S, Al-Hinai M (2015) Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. Int Biodeterior Biodegrad 98:43–52

    Article  CAS  Google Scholar 

  • Aceves-Diez AE, Estrada-Castañeda KJ, Castañeda-Sandoval LM (2015) Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils. J Environ Manage 157:213–219

    Article  PubMed  CAS  Google Scholar 

  • Agamuthu P, Tan Y, Fauziah S (2013) Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Proc Environ Sci 18:694–702

    Article  CAS  Google Scholar 

  • Al-Kindi S, Abed RM (2016) Effect of biostimulation using sewage sludge, soybean meal, and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil. Front Microbiol 7:240

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Saleh E, Hassan A (2016) Enhanced crude oil biodegradation in soil via biostimulation. Int J Phytoremed 18:822–831

    Article  CAS  Google Scholar 

  • Cardinali A, Otto S, Vischetti C, Brown C, Zanin G (2010) Effect of pesticide inoculation, duration of composting, and degradation time on the content of compost fatty acids, quantified using two methods. Appl Environ Microbiol 76:6600–6606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chorom M, Sharifi H, Motamedi H (2010) Bioremediation of a crude oil-polluted soil by application of fertilizers. Iran J Environ Health Sci Eng 7:319–326

    CAS  Google Scholar 

  • Cuiying LI, Jianling FA, Xianghua XU, Yu WU (2021) Enhanced anaerobic degradation of hexachlorobenzene in a Hydragric Acrisol using humic acid and urea. Pedosphere 31(1):172–179

    Article  Google Scholar 

  • Das S, Adhya TK (2014) Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma 213:185–192

    Article  CAS  Google Scholar 

  • Das B, Khan MI, Jayabalan R, Behera SK, Yun SI, Tripathy SK, Mishra A (2016) Understanding the antifungal mechanism of Ag@ ZnO core-shell nanocomposites against Candida krusei. Sci Rep 6(1):1–2

    Article  CAS  Google Scholar 

  • Diez M et al (2015) Rhizosphere effect on pesticide degradation in biobeds under different hydraulic loads. J Soil Sci Plant Nutr 15:410–421

    Google Scholar 

  • Erguven GO, Tatar Ş, Serdar O, Yildirim NC (2021) Evaluation of the efficiency of chlorpyrifos-ethyl remediation by Methylobacterium radiotolerans and Microbacterium arthrosphaerae using response of some biochemical biomarkers. Environ Sci Pollut Res 28(3):2871–2879

    Article  CAS  Google Scholar 

  • Fernandes SAP, Bettiol W, Cerri CC (2005) Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity. Appl Soil Ecol 30:65–77

    Article  Google Scholar 

  • Fernández JM, Plaza C, García-Gil JC, Polo A (2009) Biochemical properties and barley yield in a semiarid mediterranean soil amended with two kinds of sewage sludge. Appl Soil Ecol 42:18–24

    Article  Google Scholar 

  • García-Martínez AM, Tejada M, Díaz AI, Rodriguez-Morgado B, Bautista J, Parrado J (2010) Enzymatic vegetable organic extracts as soil biochemical biostimulants and atrazine extenders. J Agric Food Chem 58:9697–9704

    Article  PubMed  CAS  Google Scholar 

  • Govarthanan M, Lee KJ, Cho M, Kim JS, Kamala-Kannan S, Oh BT (2013) Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in mine tailings. Chemosphere 90(8):2267–2272

    Article  PubMed  CAS  Google Scholar 

  • Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Rajasekar A, Chang YC (2016) Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech 6(2):1–7

    Article  Google Scholar 

  • Govarthanan M, Ameen F, Kamala-Kannan S, Selvankumar T, Almansob A, Alwakeel SS, Kim W (2020) Rapid biodegradation of chlorpyrifos by plant growth-promoting psychrophilic Shewanella sp. BT05: an eco-friendly approach to clean up pesticide-contaminated environment. Chemosphere 247:125948

    Article  PubMed  CAS  Google Scholar 

  • Hassanshahian M, Yakimov MM, Denaro R, Genovese M, Cappello S (2014) Using Real-Time PCR to assess changes in the crude oil degrading microbial community in contaminated seawater mesocosms. Int Biodeterior Biodegrad 93:241–248

    Article  CAS  Google Scholar 

  • Huang Y, Xiao L, Li F, Xiao M, Lin D, Long X, Wu Z (2018) Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules 23:2313

    Article  PubMed Central  CAS  Google Scholar 

  • Jian C, Luukkonen P, Järvinen HY, Salonen A, Korpela K (2020) Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS ONE 15(1):227285

    Article  CAS  Google Scholar 

  • Kadian N, Malik A, Satya S, Dureja P (2012) Effect of organic amendments on microbial activity in chlorpyrifos contaminated soil. J Environ Manag 95:S199–S202

    Article  CAS  Google Scholar 

  • Korade DL, Fulekar M (2009) Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass. J Hazard Mater 172:1344–1350

    Article  PubMed  CAS  Google Scholar 

  • Krohn C, Jin J, Wood JL, Hayden HL, Kitching M, Ryan J, Fabijański P, Franks AE, Tang C (2021) Highly decomposed organic carbon mediates the assembly of soil communities with traits for the biodegradation of chlorinated pollutants. J Hazard Mater 15(404):124077

    Article  CAS  Google Scholar 

  • Kwak Y, Kim S-J, Rhee I-K, Shin J-H (2012) Application of quantitative real-time polymerase chain reaction on the assessment of organophosphorus compound degradation in in situ soil. J Korean Soc Appl Biol Chem 55:757–763

    Article  CAS  Google Scholar 

  • Liu P-WG, Wang S-Y, Huang S-G, Wang M-Z (2012) Effects of soil organic matter and ageing on remediation of diesel-contaminated soil. Environ Technol 33:2661–2672

    Article  PubMed  CAS  Google Scholar 

  • Lu P, Li Q, Liu H, Feng Z, Yan X, Hong Q, Li S (2013) Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour Technol 127:337–342

    Article  PubMed  CAS  Google Scholar 

  • Macur RE, Wheeler JT, Burr MD, Inskeep WP (2007) Impacts of 2, 4-D application on soil microbial community structure and on populations associated with 2, 4-D degradation. Microbiol Res 162:37–45

    Article  PubMed  CAS  Google Scholar 

  • Man M, Wagner-Riddle C, Dunfield KE, Deen B, Simpson MJ (2021) Long-term crop rotation and different tillage practices alter soil organic matter composition and degradation. Soil Tillage Res 209:104960

    Article  Google Scholar 

  • Nayak T, Panda AN, Kumari K, Adhya TK, Raina V (2020) Comparative genomics of a paddy field bacterial isolate Ochrobactrum sp. CPD-03: analysis of Chlorpyrifos degradation potential. Indian J Microbiol 60(3):325–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren X et al (2018) The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. Waste Manag 72:138–149

    Article  PubMed  CAS  Google Scholar 

  • Romyen S, Luepromchai E, Hawker D, Karnchanasest B (2007) Potential of agricultural by-product in reducing chlorpyrifos leaching through soil. J Appl Sci 7:2686–2690

    Article  CAS  Google Scholar 

  • Rubio-Bellido M, Madrid F, Morillo E, Villaverde J (2015) Assisted attenuation of a soil contaminated by diuron using hydroxypropyl-β-cyclodextrin and organic amendments. Sci Total Environ 502:699–705

    Article  PubMed  CAS  Google Scholar 

  • Seleem MN, Rajasekaran P, Ali M, Boyle SM, Sriranganathan N (2008) Simple method for transformation of Ochrobactrum anthropi. World J Microbiol Biotechnol 24:2111–2114

    Article  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  PubMed  CAS  Google Scholar 

  • Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435–4442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stubner S (2004) Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. J Microbiol Methods 57:219–230

    Article  PubMed  CAS  Google Scholar 

  • Svobodová K, Novotný Č (2018) Bioreactors based on immobilized fungi: bioremediation under non-sterile conditions. Appl Microbiol Biotechnol 102:39–46

    Article  PubMed  CAS  Google Scholar 

  • Taccari M, Milanovic V, Comitini F, Casucci C, Ciani M (2012) Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int Biodeterior Biodegrad 66:39–46

    Article  CAS  Google Scholar 

  • Tatar S, Yildirim NC, Serdar O, Erguven GO (2020) Can toxicities induced by insecticide methomyl be remediated via soil bacteria Ochrobactrum thiophenivorans and Sphingomonas melonis? Curr Microbiol 77:1301–1307

    Article  PubMed  CAS  Google Scholar 

  • Tejada M, Gómez I, del Toro M (2011) Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. effects on soil biology. Ecotoxicol Environ Saf 74:2075–2081

    Article  PubMed  CAS  Google Scholar 

  • Tejada M, Rodríguez-Morgado B, Gómez I, Parrado J (2014) Degradation of chlorpyrifos using different biostimulants/biofertilizers: effects on soil biochemical properties and microbial community. Appl Soil Ecol 84:158–165

    Article  Google Scholar 

  • Tsai Y-L, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Zhou Z, Liu H, Li J, Wang Y, Xu H (2017) Application of acclimated sewage sludge as a bio-augmentation/bio-stimulation strategy for remediating chlorpyrifos contamination in soil with/without cadmium. Sci Total Environ 579:657–666

    Article  PubMed  CAS  Google Scholar 

  • Wichern F, Mayer J, Joergensen RG, Müller T (2007) Release of C and N from roots of peas and oats and their availability to soil microorganisms. Soil Biol Biochem 39:2829–2839

    Article  CAS  Google Scholar 

  • Wu M et al (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeterior Biodegrad 107:158–164

    Article  CAS  Google Scholar 

  • Yang Y, Sheng G, Huang M (2006) Bioavailability of diuron in soil containing wheat-straw-derived char. Sci Total Environ 354:170–178

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R (2017) Rapid degradation of 2, 4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition. Bioresour Technol 232:146–151

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R (2018) Combination of bioaugmentation and biostimulation for remediation of paddy soil contaminated with 2, 4-dichlorophenoxyacetic acid. J Hazard Mater 353:490–495

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Liu X, Dong F, Xu J, Zheng Y, Li J (2010) Soil microbial communities response to herbicide 2, 4-dichlorophenoxyacetic acid butyl ester. Eur J Soil Biol 46:175–180

    Article  CAS  Google Scholar 

  • Zhang X, Shen Y, Yu X-y, Liu X-j (2012) Dissipation of chlorpyrifos and residue analysis in rice, soil and water under paddy field conditions. Ecotoxicol Environ Saf 78:276–280

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Department of Biotechnology (DBT), Govt. of India, New Delhi for the research grant (BT/PR7580/BCE/8/1009/2013). All authors remain highly grateful to the Director, School of Biotechnology, KIIT University for infrastructure facility which had enabled us to work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishakha Raina.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial relationships that could be construed as a potential conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 5095 KB)

Supplementary file2 (JPG 6157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, T., Adhya, T.K., Rakshit, M. et al. Combined biostimulation and bioaugmentation for chlorpyrifos degradation in laboratory microcosms. 3 Biotech 11, 439 (2021). https://doi.org/10.1007/s13205-021-02980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02980-9

Keywords

Navigation