Skip to main content
Log in

Regulation of Apolipoprotein A-I Gene Expression in Human Macrophages by Oxidized Low-Density Lipoprotein

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Apolipoprotein A-I (ApoA-I) is a key component of reverse cholesterol transport in humans. In the previous studies, we demonstrated expression of the apoA-I gene in human monocytes and macrophages; however, little is known on the regulation of the apoA-I expression in macrophages during the uptake of modified low-density lipoprotein (LDL), which is one of the key processes in the early stages of atherogenesis leading to formation of foam cells. Here, we demonstrate a complex nature of the apoA-I regulation in human macrophages during the uptake of oxidized LDL (oxLDL). Incubation of macrophages with oxLDL induced expression of the apoA-I gene within the first 24 hours, but suppressed it after 48 h. Both effects depended on the interaction of oxLDL with the TLR4 receptor, rather than on the oxLDL uptake by the macrophages. The oxLDL-mediated downregulation of the apoA-I gene depended on the ERK1/2 and JNK cascades, as well as on the NF-κB cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

ApoA-I:

apolipoprotein A-I

BSA:

bovine serum albumin

ER:

endoplasmic reticulum

FCS:

fetal calf serum

LDL:

low-density lipoprotein

oxLDL:

oxidized low-density lipoprotein

PBS:

phosphate buffered saline

PMA:

phorbol 12-myristate 13-acetate (activator of cell differentiation and/or apoptosis in cancer models)

THP-1:

human monocytic cell line derived from an acute monocytic leukemia patient

TNFα:

tumor necrosis factor α

References

  1. Wolf, D., and Ley, K. (2019) Immunity and Inflammation in Atherosclerosis, Circ. Res., 124, 315-327, https://doi.org/10.1161/CIRCRESAHA.118.313591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zannis, V. I., Chroni, A., and Krieger, M (2006) Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL, J. Mol. Med., 84, 276-294, https://doi.org/10.1007/s00109-005-0030-4.

    Article  CAS  PubMed  Google Scholar 

  3. Nikiforova, A. A., Kheĭfets, G. M., Alksnis, E. G., Parfenova, N. S., and Klimov, A. N. (1988) HDL2b lipoproteins as an acceptor of cholesterol from erythrocyte membrane and the role of lecithin-cholesterol-acyltransferase during this process, Biochemistry (Moscow), 53, 1334-1338.

    CAS  Google Scholar 

  4. Shah, P. K., Kaul, S., Nilsson, J., and Cercek, B. (2001) Exploiting the vascular protective effects of high-density lipoprotein and its apolipoproteins: an idea whose time for testing is coming, Circulation, 104, 2376-2383, https://doi.org/10.1161/hc4401.098467.

    Article  CAS  PubMed  Google Scholar 

  5. Hyka, N., Dayer, J. M., Modoux, C., Kohno, T., Edwards, C. K. 3rd, et al. (2001) Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contact-mediated activation of monocytes by T lymphocytes, Blood, 97, 2381-2389, https://doi.org/10.1182/blood.v97.8.2381.

    Article  CAS  PubMed  Google Scholar 

  6. Burger, D., and Dayer, J. M. (2002) High-density lipoprotein-associated apolipoprotein A-I: the missing link between infection and chronic inflammation? Autoimmun Rev., 1, 111-117, https://doi.org/10.1016/s1568-9972(01)00018-0.

    Article  CAS  PubMed  Google Scholar 

  7. Wadham, C., Albanese, N., Roberts, J., Wang, L., Bagley, C. J., et al. (2004) High-density lipoproteins neutralize C-reactive protein proinflammatory activity, Circulation, 109, 2116-2122, https://doi.org/10.1161/01.CIR.0000127419.45975.26.

    Article  CAS  PubMed  Google Scholar 

  8. Connelly, M. A., and Williams, D. L. (2004) SR-BI and HDL cholesteryl ester metabolism, Endocr. Res., 30, 697-703, https://doi.org/10.1081/erc-200043979.

    Article  CAS  PubMed  Google Scholar 

  9. Walsh, A., Ito, Y., and Breslow, J. L. (1989) High levels of human apolipoprotein A-I in transgenic mice result in increased plasma levels of small high density lipoprotein (HDL) particles comparable to human HDL3, J. Biol. Chem., 264, 6488-6494.

    Article  CAS  Google Scholar 

  10. Mogilenko, D. A., Orlov, S. V., Trulioff, A. S., Ivanov, A. V., Nagumanov, V. K., et al. (2012) Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages, FASEB J., 26, 2019-2030, https://doi.org/10.1096/fj.11-193946.

    Article  CAS  PubMed  Google Scholar 

  11. Shavva, V. S., Mogilenko, D. A., Nekrasova, E. V., Trulioff, A. S., Kudriavtsev, I. V., et al. (2018) Tumor necrosis factor alpha stimulates endogenous apolipoprotein A-I expression and secretion by human monocytes and macrophages: role of MAP-kinases, NF-κB, and nuclear receptors PPARα and LXRs, Mol. Cell. Biochem., 448, 211-223, https://doi.org/10.1007/s11010-018-3327-7.

    Article  CAS  PubMed  Google Scholar 

  12. Bogomolova, A. M., Shavva, V. S., Nikitin, A. A., Nekrasova, E. V., Dizhe, E. B., et al. (2019) Hypoxia as a factor involved in the regulation of the apoA-1, ABCA1, and complement C3 gene expression in human macrophages, Biochemistry (Moscow), 84, 529-539, https://doi.org/10.1134/S0006297919050079.

    Article  CAS  Google Scholar 

  13. Major, A. S., Dove, D. E., Ishiguro, H., Su, Y. R., Brown, A. M., et al. (2001) Increased cholesterol efflux in apolipoprotein AI (ApoAI)-producing macrophages as a mechanism for reduced atherosclerosis in ApoAI((–/–)) mice, Arterioscler. Thromb. Vasc. Biol., 21, 1790-1795, https://doi.org/10.1161/hq1101.097798.

    Article  CAS  PubMed  Google Scholar 

  14. Ishiguro, H., Yoshida, H., Major, A. S., Zhu, T., Babaev, V. R., et al. (2001) Retrovirus-mediated expression of apolipoprotein A-I in the macrophage protects against atherosclerosis in vivo, J. Biol. Chem., 276, 36742-36748, https://doi.org/10.1074/jbc.M106027200.

    Article  CAS  PubMed  Google Scholar 

  15. Su, Y. R., Ishiguro, H., Major, A. S., Dove, D. E., Zhang, W., et al. (2003) Macrophage apolipoprotein A-I expression protects against atherosclerosis in ApoE-deficient mice and up-regulates ABC transporters, Mol. Ther., 8, 576-583, https://doi.org/10.1016/s1525-0016(03)00214-4.

    Article  CAS  PubMed  Google Scholar 

  16. Su, Y. R., Blakemore, J. L., Zhang, Y., Linton, M. F., and Fazio, S. (2008) Lentiviral transduction of apoAI into hematopoietic progenitor cells and macrophages: applications to cell therapy of atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 28, 1439-1446, https://doi.org/10.1161/ATVBAHA.107.160093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Higuchi, K., Law, S. W., Hoeg, J. M., Schumacher, U. K., Meglin, N., and Brewer, H. B. Jr. (1988) Tissue-specific expression of apolipoprotein A-I (ApoA-I) is regulated by the 5′-flanking region of the human ApoA-I gene, J. Biol. Chem., 263, 18530-18536.

    Article  CAS  Google Scholar 

  18. Widom, R. L., Ladias, J. A., Kouidou, S., and Karathanasis, S. K. (1991) Synergistic interactions between transcription factors control expression of the apolipoprotein AI gene in liver cells, Mol. Cell. Biol., 11, 677-687, https://doi.org/10.1128/mcb.11.2.677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mogilenko, D. A., Shavva, V. S., Dizhe, E. B., and Orlov, S. V. (2019) Characterization of distal and proximal alternative promoters of the human ApoA-I gene, Mol. Biol. (Mosk.), 53, 485-496, https://doi.org/10.1134/S0026898419030121.

    Article  CAS  Google Scholar 

  20. Huuskonen, J., Vishnu, M., Chau, P., Fielding, P. E., and Fielding, C. J. (2006) Liver X receptor inhibits the synthesis and secretion of apolipoprotein A1 by human liver-derived cells, Biochemistry, 45, 15068-15074, https://doi.org/10.1021/bi061378y.

    Article  CAS  PubMed  Google Scholar 

  21. Ge, R., Rhee, M., Malik, S., and Karathanasis, S. K. (1994) Transcriptional repression of apolipoprotein AI gene expression by orphan receptor ARP-1, J. Biol. Chem., 269, 13185-13192.

    Article  CAS  Google Scholar 

  22. Shavva, V. S., Mogilenko, D. A., Bogomolova, A. M., Nikitin, A. A., Dizhe, E. B., et al. (2016) PPARγ represses apolipoprotein A-I gene but impedes TNFalpha-mediated ApoA-I downregulation in HepG2 cells, J. Cell. Biochem., 117, 2010-2022, https://doi.org/10.1002/jcb.25498.

    Article  CAS  PubMed  Google Scholar 

  23. Chan, J., Nakabayashi, H., and Wong, N. C. (1993) HNF4 increases activity of the rat ApoA1 gene, Nucleic Acids Res., 21, 1205-1211, https://doi.org/10.1093/nar/21.5.1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rottman, J. N., Widom, R. L., Nadal-Ginard, B., Mahdavi, V., and Karathanasis, S. K. (1991) A retinoic acid-responsive element in the apolipoprotein AI gene distinguishesbetween two different retinoic acid response pathways, Mol. Cell. Biol., 11, 3814-3820, https://doi.org/10.1128/mcb.11.7.3814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin, C., Duez, H., Blanquart, C., Berezowski, V., Poulain, P., et al. (2001) Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL apoA-I, J. Clin. Invest., 107, 1423-1432, https://doi.org/10.1172/JCI10852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Harnish, D. C., Malik, S., Kilbourne, E., Costa, R., and Karathanasis, S. K. (1996) Control of apolipoprotein AI gene expression through synergistic interactions between hepatocyte nuclear factors 3 and 4, J. Biol. Chem., 271, 13621-13628, https://doi.org/10.1074/jbc.271.23.13621.

    Article  CAS  PubMed  Google Scholar 

  27. Shavva, V. S., Bogomolova, A. M., Nikitin, A. A., Dizhe, E. B., Oleinikova, G. N., et al. (2017) FOXO1 and LXRα downregulate the apolipoprotein A-I gene expression during hydrogen peroxide-induced oxidative stress in HepG2 cells, Cell Stress Chaperones, 22, 123-134, https://doi.org/10.1007/s12192-016-0749-6.

    Article  CAS  PubMed  Google Scholar 

  28. Shavva, V. S., Bogomolova, A. M., Nikitin, A. A., Dizhe, E. B., Tanyanskiy, D. A., et al. (2017) Insulin-mediated downregulation of apolipoprotein A-I gene in human hepatoma cell line HepG2: the role of interaction between FOXO1 and LXRβ transcription factors, J. Cell. Biochem., 118, 382-396, https://doi.org/10.1002/jcb.25651.

    Article  CAS  PubMed  Google Scholar 

  29. Libby, P., and Theroux, P. (2005) Pathophysiology of coronary artery disease, Circulation, 111, 3481-3488, https://doi.org/10.1161/CIRCULATIONAHA.105.537878.

    Article  PubMed  Google Scholar 

  30. Parthasarathy, S., Raghavamenon, A., Garelnabi, M. O., and Santanam, N. (2010) Oxidized low density lipoprotein, Methods Mol. Biol., 610, 403-417, https://doi.org/10.1007/978-1-60327-029-8_24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng, Y., Cai, Z. R., Tang, Y., Hu, G., Lu, J., et al. (2014) TLR4/NF-κB signaling pathway-mediated and oxLDL-induced up-regulation of LOX-1, MCP-1, and VCAM-1 expressions in human umbilical vein endothelial cells, Genet. Mol. Res., 13, 680-695, https://doi.org/10.4238/2014.

    Article  CAS  PubMed  Google Scholar 

  32. Yu, X.-H., Fu, Y.-C., Zhang, D.-W., Yin, K., and Tang, C-K. (2013) Foam cells in atherosclerosis, Clin. Chim. Acta, 424, 245-252, https://doi.org/10.1016/j.cca.2013.06.006.

    Article  CAS  PubMed  Google Scholar 

  33. Chistiakov, D. A., Melnichenko, A. A., Myasoedova, V. A., Grechko, A. V., and Orekhov, A. N. (2017) Mechanisms of foam cell formation in atherosclerosis, J. Mol. Med. (Berl)., 95, 1153-1165, https://doi.org/10.1007/s00109-017-1575-8.

    Article  CAS  PubMed  Google Scholar 

  34. Chávez-Sánchez, L., Garza-Reyes, M. G., Espinosa-Luna, J. E., Chávez-Rueda, K., Legorreta-Haquet, M. V., and Blanco-Favela, F. (2014) The role of TLR2, TLR4 and CD36 in macrophage activation and foam cell formation in response to oxLDL in humans, Hum. Immunol., 75, 322-329, https://doi.org/10.1016/j.humimm.2014.01.012.

    Article  CAS  PubMed  Google Scholar 

  35. Stewart, C. R., Stuart, L. M., Wilkinson, K., van Gils, J. M., Deng, J., et al. (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer, Nat. Immunol., 11, 155-161, https://doi.org/10.1038/ni.1836.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, K., Liu, X., Liu, Y., Wang, X., Cao, L., et al. (2017) DC-SIGN and Toll-like receptor 4 mediate oxidized low-density lipoprotein-induced inflammatory responses in macrophages, Sci. Rep., 3296, 1-11, https://doi.org/10.1038/s41598-017-03740-7.

    Article  CAS  Google Scholar 

  37. Kannan, Y., Sundaram, K., Narasimhulu, C. A., Parthasarathy, S., and Wewers, M. D. (2012) Oxidatively modified low density lipoprotein (LDL) inhibits TLR2 and TLR4 cytokine responses in human monocytes but not in macrophages, J. Biol. Chem., 287, 23479-23488, https://doi.org/10.1074/jbc.M111.320960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bzowska, M., Nogieć, A., Skrzeczyńska-Moncznik, J., Mickowska, B., Guzik, K., and Pryjma, J. (2012) Oxidized LDLs inhibit TLR-induced IL-10 production by monocytes: a new aspect of pathogen-accelerated atherosclerosis, Inflammation, 35, 1567-1584, https://doi.org/10.1007/s10753-012-9472-3.

    Article  CAS  PubMed  Google Scholar 

  39. Bennett, S, and Breit, S. N. (1994) Variables in the isolation and culture of human monocytes that are of particular relevance to studies of HIV, J. Leukoc. Biol., 56, 236-240, https://doi.org/10.1002/jlb.56.3.236.

    Article  CAS  PubMed  Google Scholar 

  40. Khan, B. V., Parthasarathy, S. S., Alexander, R. W., and Medford, R. M. (1995) Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells, J. Clin. Invest., 95, 1262-1270, https://doi.org/10.1172/JCI117776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jialal, I., and Chait, A. (1989) Differences in the metabolism of oxidatively modified low density lipoprotein and acetylated low density lipoprotein by human endothelial cells: inhibition of cholesterol esterification by oxidatively modified low density lipoprotein, J. Lipid Res., 30, 1561-1568.

    Article  CAS  Google Scholar 

  42. Scoccia, A. E., Molinuevo, M. S., McCarthy, A. D., and Cortizo, A. M. (2001) A simple method to assess the oxidative susceptibility of low density lipoproteins, BMC Clin. Pathol., 1, 1, https://doi.org/10.1186/1472-6890-1-1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Esterbauer, H., and Cheeseman, K. H. (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal, Methods Enzymol., 186, 407-421, https://doi.org/10.1016/0076-6879(90)86134-h.

    Article  CAS  PubMed  Google Scholar 

  44. Mogilenko, D. A., Dizhe, E. B., Shavva, V. S., Lapikov, I. A., Orlov, S. V., and Perevozchikov, A. P. (2009) Role of the nuclear receptors HNF4α, PPARα, and LXRs in the TNFα-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells, Biochemistry, 48, 11950-11960, https://doi.org/10.1021/bi9015742.

    Article  CAS  PubMed  Google Scholar 

  45. Mogilenko, D. A., Kudriavtsev, I. V., Shavva, V. S., Dizhe, E. B., Vilenskaya, E. G., et al. (2013) Peroxisome proliferator-activated receptor alpha positively regulates complement C3 expression but inhibits tumor necrosis factor α-mediated activation of C3 gene in mammalian hepatic derived cells, J. Biol. Chem., 288, 1726-1738, https://doi.org/10.1074/jbc.M112.437525.

    Article  CAS  PubMed  Google Scholar 

  46. Yao, S., Miao, C., Tian, H., Sang, H., Yang, N., et al. (2014) Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression, J. Biol. Chem., 289, 4032-4042, https://doi.org/10.1074/jbc.M113.524512.

    Article  CAS  PubMed  Google Scholar 

  47. Sanda, G. M., Deleanu, M., Toma, L., Stancu, C. S., Simionescu, M., and Sima, A. V. (2017) Oxidized LDL-exposed human macrophages display increased MMP-9 expression and secretion mediated by endoplasmic reticulum stress, J. Cell. Biochem., 118, 661-669, https://doi.org/10.1002/jcb.25637.

    Article  CAS  PubMed  Google Scholar 

  48. Bae, Y. S., Lee, J. H., Choi, S. H., Kim, S., Almazan, F., et al. (2009) Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2, Circ. Res., 104, 210-218, https://doi.org/10.1161/CIRCRESAHA.108.181040.

    Article  CAS  PubMed  Google Scholar 

  49. Park, Y. M. (2014) CD36, a scavenger receptor implicated in atherosclerosis, Exp. Mol. Med., 46, e99, https://doi.org/10.1038/emm.2014.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, H. Y., Bian, Y. F., Zhang, H. P., Gao, F., Xiao, C. S., et al. (2015) LOX-1 is implicated in oxidized low-density lipoprotein-induced oxidative stress of macrophages in atherosclerosis, Mol. Med. Rep., 12, 5335-5341, https://doi.org/10.3892/mmr.2015.4066.

    Article  CAS  PubMed  Google Scholar 

  51. Chawla, A., Boisvert, W. A., Lee, C. H., Laffitte, B. A., Barak, Y., et al. (2001) A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis, Mol. Cell, 7, 161-171, https://doi.org/10.1016/s1097-2765(01)00164-2.

    Article  CAS  PubMed  Google Scholar 

  52. Hopkins, P. N. (2013) Molecular biology of atherosclerosis, Physiol. Rev., 93, 1317-1542, https://doi.org/10.1152/physrev.00004.2012.

    Article  CAS  PubMed  Google Scholar 

  53. Eichelbaum, K., and Krijgsveld, J. (2014) Rapid temporal dynamics of transcription, protein synthesis, and secretion during macrophage activation, Mol. Cell. Proteomics, 13, 792-810, https://doi.org/10.1074/mcp.M113.030916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clerck, A., and Sugden, P. H. (1998) The p38-MAPK inhibitor, SB203580, inhibits cardiac stress-activated protein kinases/c-Jun N-terminal kinases (SAPKs/JNKs), FEBS Lett., 426, 93-96, https://doi.org/10.1016/s0014-5793(98)00324-x.

    Article  Google Scholar 

  55. Morishima, A., Ohkubo, N., Maeda, N., Miki, T., and Mitsuda, N. (2003) NFkappaB regulates plasma apolipoprotein A-I and high density lipoprotein cholesterol through inhibition of peroxisome proliferator-activated receptor alpha, J. Biol. Chem., 278, 38188-38193, https://doi.org/10.1074/jbc.M306336200.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project no. 17-15-01326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Orlov.

Ethics declarations

The authors declare no conflict of interest. All procedures with the participation of human subjects were performed in accordance with the ethical standards of the Institutional and National Ethics Committees and the Helsinki Declaration of 1964 and its following revisions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasova, E.V., Larionova, E.E., Danko, K. et al. Regulation of Apolipoprotein A-I Gene Expression in Human Macrophages by Oxidized Low-Density Lipoprotein. Biochemistry Moscow 86, 1201–1213 (2021). https://doi.org/10.1134/S0006297921100047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921100047

Keywords

Navigation