Skip to main content
Log in

A maximum cost-performance sampling strategy for multi-fidelity PC-Kriging

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

To reduce the computational cost of uncertainty propagation, multi-fidelity polynomial chaos approaches have been developed by fusing a few expensive high-fidelity data points and many less expensive lower-fidelity data points to build a stochastic metamodel. However, previous studies mainly focused on multi-model fusion. Systematically allocating sample points from multi-fidelity models to ensure both the accuracy and efficiency of the metamodel still remain challenging. To address this issue, a new maximum cost performance (MCP) sequential sampling strategy considering both the sample cost and accuracy improvement is proposed based on the recently developed multi-fidelity PC-Kriging (MF-PCK) approach. With the proposed sampling strategy, the input location with the largest prediction error is identified as the new input sample point, and then, the multi-fidelity model with the largest CP index is selected for evaluation to reduce the computational cost as much as possible. Furthermore, a sample density function is introduced to avoid the clustering of samples, which can prevent wastage of sample points and the singularity problem. The effectiveness and relative advantage of the proposed multi-fidelity sampling strategy in terms of efficiency is demonstrated by comparative studies using several numerical examples for uncertainty propagation and an airfoil robust optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

B :

polynomial coefficient matrix

b t :

polynomial chaos coefficient vector of model with tth-level fidelity

d :

dimension of random input vector

d :

response sample dataset

E :

covariance matrix between lower-fidelity models

h,θ :

hyperparameters in the covariance function

n t :

number of sample points for tth-level fidelity model

R :

covariance function

s :

highest-level fidelity

s(x):

posterior standard deviation

t :

tth-level fidelity

x :

random input vector

x a :

new input sample location

y :

stochastic response

δ(x):

correction function of multi-fidelity pc model

ρ :

scaling factor

σ :

standard deviation value

Γ :

input sample dataset

μ :

mean value

ξ :

random vector in standard random space

Φ:

orthogonal polynomial

η :

sample density equation

ε :

small positive number prespecified by users

GP:

gaussian process

PC:

polynomial chaos

HF:

the high-fidelity model

LF:

the low-fidelity model

CP:

cost performance

References

Download references

Acknowledgements

The work was supported by the National Numerical Wind Tunnel Project [grant number NNW2020ZT7-B31] and Science Challenge Project [grant number TZ2019001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenfen Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

The results shown in the manuscript can be reproduced. Considering the size limit of the uploaded supplementary material, the codes for two of the mathematical examples for UP (Example 1 in Section 4.1.1 and Example 2 in Section 4.1.2) were uploaded as supplementary material. The remaining examples are easy to implement by changing the response functions and sample points based on the codes provided to obtain the results shown in the manuscript.

Additional information

Responsible Editor: Palaniappan Ramu

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(ZIP 90.1 kb)

H,H p, T p, V p and V d for Hyperparameter Estimation

H,H p, T p, V p and V d for Hyperparameter Estimation

$$ \mathrm{H}=\left[\begin{array}{l}{\Phi}^1\left({\mathbf{D}}_1\left(\boldsymbol{\upxi} \right)\right)\kern7.50em 0\kern0.5em \begin{array}{cc}\kern7.2em \cdots & \kern5em 0\end{array}\\ {}\begin{array}{ccc}{\rho}^1{\Phi}^1\left({\mathbf{D}}_2\left(\boldsymbol{\upxi} \right)\right)& \kern5.75em {\Phi}^2\left({\mathbf{D}}_2\left(\boldsymbol{\upxi} \right)\right)& \begin{array}{cc}\kern4.8em 0& \kern5.25em 0\end{array}\end{array}\\ {}\begin{array}{l}\begin{array}{ccc}{\rho}^1{\rho}^2{\Phi}^1\left({\mathbf{D}}_3\left(\boldsymbol{\upxi} \right)\right)& \kern5em {\rho}^2{\Phi}^2\left({\mathbf{D}}_3\left(\boldsymbol{\upxi} \right)\right)& \begin{array}{cc}\kern2.25em {\Phi}^3\left({\mathbf{D}}_3\left(\boldsymbol{\upxi} \right)\right)& \kern3.2em \vdots \end{array}\end{array}\\ {}\begin{array}{ccc}\vdots & \kern9.5em \vdots & \begin{array}{cc}\kern6.5em \vdots & \kern4.7em \vdots \end{array}\end{array}\\ {}\begin{array}{ccc}\left(\prod \limits_{i=1}^{s-1}{\rho}^i\right){\Phi}^1\left({\mathbf{D}}_s\left(\boldsymbol{\upxi} \right)\right)& \left(\prod \limits_{i=2}^{s-1}{\rho}^i\right){\Phi}^2\left({\mathbf{D}}_s\left(\boldsymbol{\upxi} \right)\right)& \kern5.25em \begin{array}{cc}\cdots & \kern3em {\Phi}^s\left({\mathbf{D}}_s\left(\boldsymbol{\upxi} \right)\right)\end{array}\end{array}\end{array}\end{array}\right] $$
(22)

where Φm(Dj(ξ)) is a matrix of size nj × (P + 1) (j, m = 1,2, …,s), formulated as:

$$ {\Phi}^m\left({\mathbf{D}}_j\left(\boldsymbol{\upxi} \right)\right)=\left[{\Phi}_0^m{\mathbf{D}}_j\left(\boldsymbol{\upxi} \right),{\Phi}_1^m{\mathbf{D}}_j\left(\boldsymbol{\upxi} \right),\dots, {\Phi}_P^m{\mathbf{D}}_j\left(\boldsymbol{\upxi} \right)\right] $$
(23)

For the hierarchical-fidelity case,

$$ {\mathbf{H}}_p=\left(\left(\prod \limits_{i=1}^{s-1}{\rho}^i\right){\boldsymbol{\Phi}}^1\left(\boldsymbol{\upxi} \left({\mathbf{x}}_{pre}\right)\right),\dots, {\rho}^{s-1}{\boldsymbol{\Phi}}^{s-1}\left(\boldsymbol{\upxi} \left({\mathbf{x}}_{pre}\right)\right),{\boldsymbol{\Phi}}^s\left(\boldsymbol{\upxi} \left({\mathbf{x}}_{pre}\right)\right)\right) $$
(24)
$$ {\mathbf{T}}_p={\left({t}_1{\left({\mathbf{x}}_{pre},{\mathbf{D}}_1\right)}^{\mathrm{T}},\dots, {t}_s{\left({\mathbf{x}}_{pre},{\mathbf{D}}_s\right)}^{\mathrm{T}}\right)}^{\mathrm{T}} $$
(25)
$$ {t}_1\left({\mathbf{x}}_{pre},{\mathbf{D}}_1\right)=\left(\prod \limits_{i=1}^{s-1}{\rho}^i\right){\sigma}_1^2{R}_1{\left({\mathbf{x}}_{pre},{\mathbf{D}}_1\right)}^{\mathrm{T}} $$
(26)
$$ {t}_m\left({\mathbf{x}}_{pre},{\mathbf{D}}_m\right)={\rho}^{m-1}{t}_{m-1}\left({\mathbf{x}}_{pre},{\mathbf{D}}_m\right)+\left(\prod \limits_{i=t}^{s-1}{\rho}^i\right){\sigma}_m^2{R}_m{\left({\mathbf{x}}_{pre},{\mathbf{D}}_m\right)}^{\mathrm{T}},m=2,\dots, s $$
(27)
$$ {\mathbf{V}}_p={\left(\prod \limits_{i=1}^{s-1}{\rho}^i\right)}^2{\sigma}_1^2{R}_1\left({\mathbf{x}}_{pre},{\mathbf{x}}_{pre}\right)+\dots +{\left({\rho}^{s-1}\right)}^2{\sigma}_{s-1}^2{R}_{s-1}\left({\mathbf{x}}_{pre},{\mathbf{x}}_{pre}\right)+{\sigma}_s^2{R}_s\left({\mathbf{x}}_{pre},{\mathbf{x}}_{pre}\right) $$
(28)
$$ {\mathbf{V}}_d=\left(\begin{array}{ccc}{V}_{1,1}& \cdots & {V}_{1,s}\\ {}\vdots & \ddots & \vdots \\ {}{V}_{s,1}& \vdots & {V}_{s,s}\end{array}\right) $$
(29)

For the mth diagonal block,

$$ {V}_{m,m}={\sigma}_m^2{R}_m\left({\mathbf{D}}_m\right)+{\sigma}_{m-1}^2{\left({\rho}^{m-1}\right)}^2{R}_{m-1}\left({\mathbf{D}}_{m-1}\right)+\dots +{\sigma}_1^2{\left(\prod \limits_{i=1}^{m-1}{\rho}^i\right)}^2{R}_1\left({\mathbf{D}}_1\right) $$
(30)

For the off-diagonal block,

$$ {V}_{m,{m}^{\prime }}=\underset{1\le t<{t}^{\prime}\le s}{\left(\prod \limits_{i=t}^{t^{\prime }-1}{\rho}^i\right)}\left({\sigma}_m^2{R}_m\left({\mathbf{D}}_m,{\mathbf{D}}_{m^{\prime }}\right)+\dots +{\sigma}_1^2{\left(\prod \limits_{i=1}^{m-1}{\rho}^i\right)}^2{R}_1\left({\mathbf{D}}_1,{\mathbf{D}}_{m^{\prime }}\right)\right) $$
(31)

For the nonhierarchical-fidelity case,

$$ {\mathbf{H}}_p=\left({\rho}^1{\boldsymbol{\Phi}}^1\left(\boldsymbol{\upxi} \left({\mathbf{x}}_{pre}\right)\right),\dots, {\rho}^{s-1}{\boldsymbol{\Phi}}^{s-1}\left(\boldsymbol{\upxi} \left({\mathbf{x}}_{pre}\right)\right),{\boldsymbol{\Phi}}^s\left(\boldsymbol{\upxi} \left({\mathbf{x}}_{pre}\right)\right)\right) $$
(32)
$$ {\mathbf{T}}_p=\left[{\boldsymbol{\rho}}^{\mathrm{T}}\mathbf{E}{e}_1R\left({\mathbf{x}}_{pre},{\mathbf{D}}_1\right),\dots, {\boldsymbol{\rho}}^{\mathrm{T}}\mathbf{E}{e}_{s-1}R\left({\mathbf{x}}_{pre},{\mathbf{D}}_{s-1}\right),{\boldsymbol{\rho}}^{\mathrm{T}}\mathbf{E}\boldsymbol{\rho } R\left({\mathbf{x}}_{pre},{\mathbf{D}}_s\right)+{\sigma}_{\delta}^2{R}_{\delta}\left({\mathbf{x}}_{pre},{\mathbf{D}}_s\right)\right] $$
(33)
$$ {\mathbf{V}}_p={\boldsymbol{\rho}}^{\mathrm{T}}\mathbf{E}\boldsymbol{\rho } R\left({\mathbf{x}}_{pre},{\mathbf{x}}_{pre}\right)+{\sigma}_{\delta}^2{R}_{\delta}\left({\mathbf{x}}_{pre},{\mathbf{x}}_{pre}\right) $$
(34)
$$ {\mathbf{V}}_d=\left[\begin{array}{l}{e}_1^{\mathrm{T}}\mathbf{E}{e}_1R\left({\mathbf{D}}_1,{\mathbf{D}}_1\right)\kern2.25em \cdots \kern0.5em \begin{array}{cc}\kern1.75em {e}_1^{\mathrm{T}}\mathbf{E}{e}_{s-1}R\left({\mathbf{D}}_1,{\mathbf{D}}_{s-1}\right)& \kern4.75em {e}_1^{\mathrm{T}}\mathbf{E}\boldsymbol{\rho } R\left({\mathbf{D}}_1,{\mathbf{D}}_s\right)\end{array}\\ {}\kern3.5em \begin{array}{ccc}\vdots & \kern3.5em \ddots & \begin{array}{cc}\kern10.25em & \kern7.5em \vdots \end{array}\end{array}\\ {}\begin{array}{l}\begin{array}{ccc}{e}_{s-1}^{\mathrm{T}}\mathbf{E}{e}_1R\left({\mathbf{D}}_{s-1},{\mathbf{D}}_1\right)& \cdots & \kern2em \begin{array}{cc}{e}_{s-1}^{\mathrm{T}}\mathbf{E}{e}_{s-1}R\left({\mathbf{D}}_{s-1},{\mathbf{D}}_{s-1}\right)& \kern2.25em {e}_{s-1}^{\mathrm{T}}\mathbf{E}\boldsymbol{\rho } R\left({\mathbf{D}}_{s-1},{\mathbf{D}}_s\right)\end{array}\end{array}\\ {}\begin{array}{ccc}\rho \mathbf{E}{e}_1R\left({\mathbf{D}}_s,{\mathbf{D}}_{s-1}\right)& \kern1.5em \cdots & \kern2em \begin{array}{cc}\rho \mathbf{E}{e}_{s-1}R\left({\mathbf{D}}_s,{\mathbf{D}}_{s-1}\right)& \kern3.75em {\boldsymbol{\rho}}^{\mathrm{T}}\mathbf{E}\boldsymbol{\rho } R\left({\mathbf{D}}_s,{\mathbf{D}}_s\right)\end{array}\end{array}+{\sigma}_{\delta}^2{R}_{\delta}\left({\mathbf{D}}_s,{\mathbf{D}}_s\right)\end{array}\end{array}\right] $$
(35)

where ei is an (s−1)-dimensional unit column vector, where the ith element is 1, while the others are 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., Xiong, F., Wang, F. et al. A maximum cost-performance sampling strategy for multi-fidelity PC-Kriging. Struct Multidisc Optim 64, 3381–3399 (2021). https://doi.org/10.1007/s00158-021-02994-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02994-0

Keywords

Navigation