Skip to main content
Log in

Numerical Study of JAM-GS-GAA FinFET: A Fin Aspect Ratio Optimization for Upgraded Analog and Intermodulation Distortion Performance

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper optimizes the fin aspect ratio (AR) of Junctionless Accumulation Mode Gate Stack Gate All Around (JAM-GS-GAA) FinFET with constant conducting channel area for upgraded static, analog, and distortion performance. The crucial static and analog parameters, for instance, electric field, potential, band diagram, electron concentration, transconductance, quality factor, drain current, early voltage, intrinsic gain, output resistance, and output conductance, are evaluated and analyzed. The simulated results reveal that the static and analog performance of JAM-GS-GAA FinFET enhances with the increase in the fin AR. Besides, linearity and distortion parameters like voltage intercept points (VIP2, VIP3), 1-dB compression point, zero crossover point, harmonic distortions (HD2, HD3), and total harmonic distortion are explored. It has been noticed that a low fin AR lessens the distortion in the device and improves the device’s linearity performance. Moreover, the zero crossover point decreased significantly for the device with low fin AR, which reduces the device operation optimum bias point. Thus, the findings of this paper can help engineers to design 3-D devices according to their needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

The authors mentioned above have all the relevant data associated with this research work and will be dedicated to sharing that they will be asked to do so in the future.

References

  1. Moore GE (1998) Cramming more components onto integrated circuits. Proc IEEE 86:82–85. https://doi.org/10.1109/JPROC.1998.658762

  2. Chaudhary A, Kumar MJ (2004) Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: A review. IEEE Trans Device Mater Reliab 4:99–109. https://doi.org/10.1109/TDMR.2004.824359

    Article  Google Scholar 

  3. Iwai H (2009) Roadmap for 22 nm and beyond (Invited Paper). Microelectron Eng 86:1520–1528. https://doi.org/10.1016/j.mee.2009.03.129

    Article  CAS  Google Scholar 

  4. Kumar A, Gupta N, Chaujar R (2016) TCAD RF performance investigation of transparent gate recessed channel MOSFET. Microelectron J 49:36–42. https://doi.org/10.1016/j.mejo.2015.12.007

    Article  Google Scholar 

  5. Samal A, Pradhan KP, Mohapatra SK (2021) Improvising the switching ratio through low-k/High-k spacer and dielectric gate stack in 3D FinFET - a simulation perspective. Silicon 13:2655–2660. https://doi.org/10.1007/s12633-020-00618-8

    Article  CAS  Google Scholar 

  6. Colinge JP, Lee CW, Afzalian A, Akhavan ND, Yan R, Ferain I, Razavi P, O’Neill B, Blake A, White M, Kelleher AM, McCarthy B, Murphy R (2010) Nanowire transistors without junctions. Nat Nanotechnol 5:225–229. https://doi.org/10.1038/nnano.2010.15

    Article  CAS  PubMed  Google Scholar 

  7. Biswas K, Sarkar A, Sarkar CK (2018) Fin shape influence on analog and RF performance of junctionless accumulation-mode bulk FinFETs. Microsyst Technol 24:2317–2324. https://doi.org/10.1007/s00542-018-3729-1

    Article  CAS  Google Scholar 

  8. Kim TK, Kim DH, Yoon YG, Moon JM, Hwang BW, Moon DI, Lee GS, Lee DW, Yoo DE, Hwang HC, Kim JS, Choi YK, Cho BJ, Lee SH (2013) First demonstration of junctionless accumulation-mode bulk FinFETs with robust junction isolation. IEEE Electron Device Lett 34:1479–1481. https://doi.org/10.1109/LED.2013.2283291

    Article  CAS  Google Scholar 

  9. Lee CW, Ferain I, Afzalian A, Yan R, Akhavan ND, Razavi P, Colinge JP (2010) Performance estimation of junctionless multigate transistors. Solid State Electron 54:97–103. https://doi.org/10.1016/j.sse.2009.12.003

    Article  CAS  Google Scholar 

  10. Lo SH, Buchanan DA, Taur Y, Wang W (1997)Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s. IEEE Electron Device Lett 18:209–211. https://doi.org/10.1109/55.568766

    Article  CAS  Google Scholar 

  11. Ribes G, Mitard J, Denais M, Bruyere S, Monsieur F, Parthasarathy C, Vincent E, Ghibaudo G (2005) Review on high-k dielectrics reliability issues. IEEE Trans Device Mater Reliab 5:5–19. https://doi.org/10.1109/TDMR.2005.845236

    Article  CAS  Google Scholar 

  12. Kerber A, Cartier E, Pantisano L, Degraeve R, Kauerauf T, Kim Y, Hou A, Groeseneken G, Maes HE, Schwalke U (2003) Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics. IEEE Electron Device Lett 24:87–89. https://doi.org/10.1109/LED.2003.808844

    Article  CAS  Google Scholar 

  13. Onishi K, Kang CS, Choi R, Cho HJ, Gopalan S, Nieh RE, Krishnan SA, Lee JC (2003) Improvement of surface carrier mobility of HfO2 MOSFETs by high-temperature forming gas annealing. IEEE Trans Electron Devices 50:384–390. https://doi.org/10.1109/TED.2002.807447

    Article  CAS  Google Scholar 

  14. Gupta N, Chaujar R (2016) Optimization of high-k and gate metal workfunction for improved analog and intermodulation performance of Gate Stack (GS)-GEWE-SiNW MOSFET. Superlattices Microstruct 97:630–641. https://doi.org/10.1016/j.spmi.2016.07.021

    Article  CAS  Google Scholar 

  15. Huang YC, Chiang MH, Wang SJ, Fossum JG (2017) GAAFET versus pragmatic FinFET at the 5nm Si-based CMOS Technology node. IEEE J Electron Devices Soc 5:164–169. https://doi.org/10.1109/JEDS.2017.2689738

    Article  Google Scholar 

  16. Kumar B, Kumar A, Chaujar R (2020) The effect of gate stack and high-ĸ spacer on device performance of a junctionless GAA FinFET. IEEE VLSI Device, Circuit Systems Conference, 159–163. https://doi.org/10.1109/VLSIDCS47293.2020.9179855

  17. Mohapatra SK, Pradhan KP, Singh D, Sahu PK (2015) The role of geometry parameters and Fin aspect ratio of sub-20nm SOI-FinFET: An analysis towards analog and RF circuit design. IEEE Trans Nanotechnol 14:546–554. https://doi.org/10.1109/TNANO.2015.2415555

    Article  CAS  Google Scholar 

  18. Nagy D, Indalecio G, Garcia-Loureiro AJ, Elmessary MA, Kalna K, Seoane N (2018) FinFET versus gate-all-around nanowire FET: Performance, scaling, and variability. IEEE J Electron Devices Soc 6:332–340. https://doi.org/10.1109/JEDS.2018.2804383

    Article  CAS  Google Scholar 

  19. Boukortt N, Hadri B, Patanè S, Caddemi A, Crupi G (2017) Investigation on TG n-FinFET parameters by varying channel doping concentration and gate length. Silicon 9:885–893. https://doi.org/10.1007/s12633-016-9528-3

    Article  CAS  Google Scholar 

  20. Coquand R, Jaud MA, Rozeau O, ElOudrhiri AI, Martinie S, Triozon F, Pons N, Barraud S, Monfray S, Boeuf F, Ghibaudo G, Faynot O (2013) Comparative simulation of TriGate and FinFET on SOI: Evaluating a multiple threshold voltage strategy on triple gate devices. IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference 13–14. https://doi.org/10.1109/S3S.2013.6716523

  21. Kumar B, Chaujar R (2021) Fin aspect ratio optimization of novel junctionless Gate Stack Gate All Around (GS-GAA) FinFET for Analog/RF applications. Microelectronics, circuits and systems. Lect Notes Electr Eng 755:59–67. https://doi.org/10.1007/978-981-16-1570-2_6

    Article  Google Scholar 

  22. Biswas K, Sarkar CK (2018) Optimizing Fin aspect ratio of junctionless bulk FinFET for application in Analog/RF circuit. IEEE Electron Devices Kolkata Conf, 591–595. https://doi.org/10.1109/edkcon.2018.8770515

  23. Gupta N, Kumar A (2020) Assessment of high-k gate stack on sub-10 nm SOI-FinFET for high-performance analog and RF applications perspective. ECS J Solid State Sci Technol 9:123009. https://doi.org/10.1149/2162-8777/abcf14

    Article  CAS  Google Scholar 

  24. Liu Y, Kijima S, Sugimata E, Masahara M, Endo K, Matsukawa T, Ishii K, Sakamoto K, Sekigawa T, Yamauchi H, Takanashi Y, Suzuki E (2006) Investigation of the TiN gate electrode with tunable work function and its application for FinFET fabrication. IEEE Trans Nanotechnol 5:723–728. https://doi.org/10.1109/TNANO.2006.885035

    Article  Google Scholar 

  25. Sjöblom G (2006) Metal gate technology for advanced CMOS devices, Ph.D. dissertation Dept. Engg. Sci., Uppsala Univ., Sweden

  26. Vitale SA, Kedzierski J, Healey P, Wyatt PW, Keast CL (2011)Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation. IEEE Trans Electron Devices 58:419–426. https://doi.org/10.1109/TED.2010.2092779

    Article  CAS  Google Scholar 

  27. ATLAS User’s Manual (2016) SILVACO International, Santa Clara

  28. Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842. https://doi.org/10.1103/PhysRev.87.835

    Article  CAS  Google Scholar 

  29. Hall RN (1952)Electron-hole recombination in Germanium. Phys Rev 87:387. https://doi.org/10.1103/PhysRev.87.387

    Article  CAS  Google Scholar 

  30. Arora ND, Hauser JR, Roulston DJ (1982) Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans Electron Devices 29:292–295. https://doi.org/10.1109/T-ED.1982.20698

    Article  Google Scholar 

  31. Hurkx GAM, Klaassen DBM, Knuvers MPG (1992) A New Recombination Model for Device Simulation Including Tunneling. IEEE Trans Electron Devices 39:331–338. https://doi.org/10.1109/16.121690

    Article  Google Scholar 

  32. Crowell CR, Sze SM (1966) Temperature dependence of avalanche multiplication in semiconductors. Appl Phys Lett 9:242–244. https://doi.org/10.1063/1.1754731

    Article  CAS  Google Scholar 

  33. Dirac PAM (1926) On the theory of quantum mechanics. Proc R Soc London Ser A. Contain Pap a Math Phys Character 112:661–677. https://doi.org/10.1098/rspa.1926.0133

    Article  CAS  Google Scholar 

  34. Lee H, Yu LE, Ryu SW, Han JW, Jeon K, Jang DY, Kim KH, Lee J, Kim JH, Jeon SC, Lee GS, Oh JS, Park YC, Bae WH, Lee HM, Yang JM, Yoo JJ, Kim SI, Choi YK (2006)Sub-5nm all-around gate FinFET for ultimate scaling. Dig Tech Pap - Symp VLSI Technol 58–59. https://doi.org/10.1109/vlsit.2006.1705215

  35. Auth C, Aliyarukunju A, Asoro M, Bergstrom D et al (2017) A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects. IEEE International Electron Devices Meeting, 673–676. https://doi.org/10.1109/IEDM.2017.8268472

  36. Choi SN, Moon SE, Yoon SM (2021) Impact of oxide gate electrode for ferroelectric field-effect transistors with metal-ferroelectric-metal-insulator-semiconductor gate stack using undoped HfO2 thin films prepared by atomic layer deposition. Nanotechnology 32:085709. https://doi.org/10.1088/1361-6528/abc98c

    Article  CAS  PubMed  Google Scholar 

  37. Kumar A, Gupta N, Tripathi SK, Tripathi MM, Chaujar R (2020) Performance evaluation of linearity and intermodulation distortion of nanoscale GaN-SOI FinFET for RFIC design. AEU - Int J Electron Commun 115:153052. https://doi.org/10.1016/j.aeue.2019.153052

    Article  Google Scholar 

  38. Long W, Ou H, Kuo JM, Chin KK (1999)Dual-Material Gate (DMG) field effect transistor. IEEE Trans Electron Devices 46:865–870. https://doi.org/10.1109/16.760391

    Article  Google Scholar 

  39. Kumar A, Tripathi MM, Chaujar R (2018) Comprehensive analysis of sub-20 nm black phosphorus based junctionless-recessed channel MOSFET for analog/RF applications. Superlattices Microstruct 116:171–180. https://doi.org/10.1016/j.spmi.2018.02.018

    Article  CAS  Google Scholar 

  40. Kumar B, Chaujar R (2021) TCAD temperature analysis of gate stack gate all around (GS-GAA) FinFET for improved RF and wireless performance. Silicon 1–13. https://doi.org/10.1007/s12633-021-01040-4

  41. Doornbos G, Passlack M (2010) Benchmarking of III-V n-MOSFET maturity and feasibility for future CMOS. IEEE Electron Device Lett 31:1110–1112. https://doi.org/10.1109/LED.2010.2063012

    Article  CAS  Google Scholar 

  42. Gupta N, Jain A, Kumar A (2021) 20 nm GAA-GaN/Al2O3 nanowire MOSFET for improved analog/linearity performance metrics and suppressed distortion. Appl Phys A Mater Sci Process 127:1–9. https://doi.org/10.1007/s00339-021-04673-9

    Article  CAS  Google Scholar 

  43. Pradhan KP, Mohapatra SK, Sahu PK, Behera DK (2014) Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET. Microelectronics J 45:144–151. https://doi.org/10.1016/j.mejo.2013.11.016

    Article  CAS  Google Scholar 

  44. Kumar B, Chaujar R (2021) Analog and RF performance evaluation of Junctionless Accumulation Mode (JAM) Gate Stack Gate All Around (GS-GAA) FinFET. Silicon 13:919–927. https://doi.org/10.1007/s12633-020-00910-7

    Article  CAS  Google Scholar 

  45. Kumar SP, Agrawal A, Chaujar R, Gupta RS, Gupta M (2011) Device linearity and intermodulation distortion comparison of dual material gate and conventional AlGaN/GaN high electron mobility transistor. Microelectron Reliab 51:587–596. https://doi.org/10.1016/j.microrel.2010.09.033

    Article  CAS  Google Scholar 

  46. Kumar A, Tripathi MM, Chaujar R (2018) Reliability issues of In2O5Sn gate electrode recessed channel MOSFET: Impact of interface trap charges and temperature. IEEE Trans Electron Devices 65:860–866. https://doi.org/10.1109/TED.2018.2793853

    Article  CAS  Google Scholar 

  47. Sreenivasulu VB, Narendar V (2021) A comprehensive analysis of Junctionless Tri-Gate(TG) FinFET towards low-power and high-frequency applications at 5-nm gate length. Silicon. https://doi.org/10.1007/s12633-021-00987-8

  48. Gupta N, Kumar A, Chaujar R (2015) Effect of dielectric engineering on analog and linearity performance of gate electrode workfunction engineered (GEWE) silicon nanowire MOSFET. IEEE-NANO2015–15th Int Conf Nanotechnol, 928–931. https://doi.org/10.1109/NANO.2015.7388768

  49. Dutta A, Koley K, Sarkar CK (2014) Analysis of Harmonic distortion in asymmetric underlap DG-MOSFET with high-k spacer. Microelectron Reliab 54:1125–1132. https://doi.org/10.1016/j.microrel.2013.12.001

    Article  Google Scholar 

  50. Cerdeira A, Alemán MA, Estrada M, Flandre D (2004) Integral function method for determination of nonlinear harmonic distortion. Solid State Electron 48:2225–2234. https://doi.org/10.1016/j.sse.2004.06.001

    Article  CAS  Google Scholar 

  51. Doria RT, Cerdeira A, Raskin JP, Flandre D, Pavanello MA (2008) Harmonic distortion analysis of double gate graded-channel MOSFETs operating in saturation. Microelectronics J 39:1663–1670. https://doi.org/10.1016/j.mejo.2008.02.006

    Article  Google Scholar 

  52. Groenewold G, Lubbers WJ (1994) Systematic distortion analysis for MOSFET integrators with use of a New MOSFET model. IEEE Trans Circuits Syst II Analog Digit Signal Process 41:569–580. https://doi.org/10.1109/82.326583

    Article  Google Scholar 

Download references

Acknowledgements

For providing all the research facilities, the authors are thankful to Microelectronics Research Laboratory, DTU.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design.

Corresponding author

Correspondence to Rishu Chaujar.

Ethics declarations

The authors have seen all the Ethical Standards and will suppose to follow them in the future.

Conflict of Interests

The authors declare that they have no known conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate & for Publication

Since the concerned research paper is based on the ‘non-life science journal.’ So, ‘Not Applicable’ here. However, the authors have gone through all journal policies and consented to the authorities for further processing.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Chaujar, R. Numerical Study of JAM-GS-GAA FinFET: A Fin Aspect Ratio Optimization for Upgraded Analog and Intermodulation Distortion Performance. Silicon 14, 309–321 (2022). https://doi.org/10.1007/s12633-021-01395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01395-8

Keywords

Navigation