Skip to main content
Log in

Robust SOF Stackelberg game for stochastic LPV systems

  • Research Paper
  • Special Focus on Control and Analysis for Stochastic Systems
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A robust static output feedback (SOF) Stackelberg game with multiple followers in stochastic linear parameter varying (LPV) systems is investigated. The conditions for the existence of a robust SOF Stackelberg strategy set under H constraints are established by the cross-coupled matrix inequality (CCMI). To determine this strategy set, the optimization problems corresponding to the relevant cost bounds are defined, and their solution sets are derived using the Karush-Kuhn-Tucker conditions. The results show that the robust SOF Stackelberg strategy set can be obtained by solving higher-order cross-coupled matrix equations (CCMEs). Because CCMEs are complex and difficult to solve numerically, a heuristic algorithm is developed by combining the CCMEs with the CCMIs. The convergence property is proven using the Krasnoselskii-Mann (KM) iteration algorithm. Finally, two numerical examples are solved to demonstrate the reliability and usefulness of the proposed heuristic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yong J. A leader-follower stochastic linear quadratic differential game. SIAM J Control Optim, 2002, 41: 1015–1041

    Article  MathSciNet  MATH  Google Scholar 

  2. Shi L R, Zhao Z Y, Lin Z L. Robust semi-global leader-following practical consensus of a group of linear systems with imperfect actuators. Sci China Inf Sci, 2017, 60: 072201

    Article  MathSciNet  Google Scholar 

  3. Xu J J, Shi J T, Zhang H S. A leader-follower stochastic linear quadratic differential game with time delay. Sci China Inf Sci, 2018, 61: 112202

    Article  MathSciNet  Google Scholar 

  4. Wang G, Wang Y, Zhang S. An asymmetric information mean-field type linear-quadratic stochastic Stackelberg differential game with one leader and two followers. Optim Control Appl Meth, 2020, 41: 1034–1051

    Article  MathSciNet  MATH  Google Scholar 

  5. Moon J, Başar T. Linear quadratic mean field Stackelberg differential games. Automatica, 2018, 97: 200–213

    Article  MathSciNet  MATH  Google Scholar 

  6. Kim K B, Tang A, Low S H. A stabilizing AQM based on virtual queue dynamics in supporting TCP with arbitrary delays. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, 2003. 3665–3670

  7. Shi J T, Wang G C, Xiong J. Linear-quadratic stochastic Stackelberg differential game with asymmetric information. Sci China Inf Sci, 2017, 60: 092202

    Article  Google Scholar 

  8. Li J, Ma G Q, Li T, et al. A Stackelberg game approach for demand response management of multi-microgrids with overlapping sales areas. Sci China Inf Sci, 2019, 62: 212203

    Article  MathSciNet  Google Scholar 

  9. Ku C C, Wu C I. Gain-scheduled H control for linear parameter varying stochastic systems. J Dynamic Syst Measurement Control, 2015, 137: 111012

    Article  Google Scholar 

  10. Weiss Y, Allerhand L I, Arogeti S. Yaw stability control for a rear double-driven electric vehicle using LPV-H methods. Sci China Inf Sci, 2018, 61: 070206

    Article  MathSciNet  Google Scholar 

  11. Mukaidani H. Gain-scheduled H constraint Pareto optimal strategy for stochastic LPV systems with multiple decision makers. In: Proceedings of American Control Conference, Seattle, 2017. 1097–1102

  12. Mukaidani H, Unno M, Xu H, et al. Gain-scheduled Nash games with H constraint for stochastic LPV systems. In: Proceedings of the 20th IFAC World Congress, Toulouse, 2017. 1478–1483

  13. Ahmed M, Mukaidani H, Shima T. H constraint Pareto optimal strategy for stochastic LPV systems. Int Game Theor Rev, 2018, 20: 1750031

    Article  MathSciNet  MATH  Google Scholar 

  14. Sagara M, Mukaidani H, Saravanakumar R, et al. Gain-scheduled robust Pareto static output feedback strategy for stochastic LPV systems. In: Proceedings of the 58th Annual Conference of the Society of Instrument and Control Engineers of Japan, Hiroshima, 2019. 76–81

  15. Mukaidani H, Xu H. Infinite horizon Stackelberg games with a large follower population for stochastic LPV systems. IEEE Control Syst Lett, 2022, 6: 1034–1039

    Article  MathSciNet  Google Scholar 

  16. Chen B S, Zhang W. Stochastic H2/H control with state-dependent noise. IEEE Trans Automat Contr, 2004, 49: 45–57

    Article  Google Scholar 

  17. Zhang W, Feng G. Nonlinear stochastic H2/H control with (x, u, v)-dependent noise: infinite horizon case. IEEE Trans Automat Contr, 2008, 53: 1323–1328

    Article  MATH  Google Scholar 

  18. Reich S. Weak convergence theorems for nonexpansive mappings in Banach spaces. J Math Anal Appl, 1979, 67: 274–276

    Article  MathSciNet  MATH  Google Scholar 

  19. Rami M A, Zhou X Y. Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls. IEEE Trans Automat Contr, 2000, 45: 1131–1143

    Article  MathSciNet  MATH  Google Scholar 

  20. Velegol D, Suhey P, Connolly J, et al. Chemical game theory. Ind Eng Chem Res, 2018, 57: 13593–13607

    Article  Google Scholar 

  21. Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  22. Ross D. Controller design for time lag systems via a quadratic criterion. IEEE Trans Automat Contr, 1971, 16: 664–672

    Article  Google Scholar 

  23. Mukaidani H, Saravanakumar R, Xu H, et al. Stackelberg strategy for uncertain Markov jump delay stochastic systems. IEEE Control Syst Lett, 2020, 4: 1006–1011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Mukaidani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukaidani, H., Xu, H. Robust SOF Stackelberg game for stochastic LPV systems. Sci. China Inf. Sci. 64, 200202 (2021). https://doi.org/10.1007/s11432-021-3302-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3302-5

Keywords

Navigation