Skip to main content
Log in

Catalase and Superoxide Dismutase Activity in Erythrocytes and the Methemoglobin Level in Blood of the Black Scorpionfish (Scorpaena porcus, Linnaeus 1758) Exposed to Acute Hypoxia

  • ORIGINAL PAPERS
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The effect of exposure to acute hypoxia on the level of methemoglobin (MtHb) in blood and the activity of catalase (CAT) and superoxide dismutase (SOD) in erythrocytes of the Black Scorpionfish (Scorpaena porcus, Linnaeus 1758) was studied in experiments in vivo. The O2 concentration in seawater was reduced from 8.5–8.7 mgO2/L to the required values by pumping N2 into the water for 1.5–2.0 h. The concentration range of 0.35–8.50 mgO2/L was studied. The exposure lasted for 4 h at a water temperature of 14–16°C. This showed that at oxygen concentrations in water less than 2 mgO2/L part of hemoglobin passes into the ferric form. The effect was most pronounced in the case of acute hypoxia exposure (less than 1 mgO2/L). The maximum increase in the MtHb level was 19% of the total level of the pigment in blood. This correlated with a significant increase in the SOD and CAT activity in erythrocytes (with the coefficient of determination R2 higher than 0.750) and indicated an increase in the dismutation of superoxide anion in red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Girin, S.V., Modification of the method for determining catalase activity in biological substrates, Lab. Diagn., 1999, no. 4, pp. 45–46.

  2. Kushakovsky, M.S., Metgemoglobinemii. Spravochnik po funktsional’noi diagnostike (Methemoglobinemias: A Reference Book for Functional Diagnostics), Moscow: Meditsina, 1970, pp. 423–427.

  3. Parfenova, I.A., Critical and threshold oxidative stresses in marine fish with different tolerances to external hypoxia, in VII Mizhn. naukovo-prakt. konf. studentiv, aspirantiv ta molodikh vchenikh “Ekologiya. Lyudina. Suspil’stvo” (VII Int. Sci.-Pract. Conf. of Students, Graduate Students, and Young Researchers “Ecology. Person. Society”), Kyiv, 2004, p. 53.

  4. Pereslegina, I.A., Activity of antioxidant enzymes in saliva of healthy children, Lab. Delo, 1989, no. 11, pp. 20–23.

  5. Savina, M.V., Mekhanizmy adaptatsii tkanevogo dykhaniya v evolyutsii pozvonochnykh (Mechanisms of Adaptation of Tissue Respiration in the Vertebrate Evolution), Moscow: Nauka, 1992.

  6. Soldatov, A.A., Gostyukhina, O.L., and Golovina, I.V., State of the antioxidant enzyme complex in tissues of the Black Sea mollusc Mytilus galloprovincialis under natural oxidative stress, J. Evol. Biochem. Physiol., 2008, vol. 44, no. 2, artic. ID 175. https://doi.org/10.1134/S0022093008020047.

  7. Adragna, N.C., Di Fulvio, M., and Lauf, P.K., Regulation of K-Cl cotransport: From function to genes, J. Membr. Biol., 2004, vol. 201, pp. 109–137.

    Article  CAS  Google Scholar 

  8. Affonso, E.G., Polez, V.L.P., Corrêa, C.F., et al., Blood parameters and metabolites in the teleost fish Colossoma macropomum exposed to sulfide or hypoxia, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2002, vol. 133, no. 3, pp. 375–382.

    CAS  Google Scholar 

  9. Arnaud, J., Quilici, J.C., Gutierrez, N., et al., Methaemoglobin and erythrocyte reducing systems in high-altitude natives, Ann. Hum. Biol., 1979, vol. 6, no. 6, pp. 585–592.

    Article  CAS  Google Scholar 

  10. Boutilier, R.G. and Ferguson, R.A., Nucleated red cell function: Metabolism and pH regulation, Can. J. Zool., 1989, vol. 67, pp. 2986–2993.

    Article  CAS  Google Scholar 

  11. Cameron, J.N., Methemoglobin in erythrocytes of rainbow trout, Comp. Biochem. Physiol., Part A: Physiol., 1971, vol. 40, pp. 743–749.

    Article  CAS  Google Scholar 

  12. Chen, N., Wu, M., Tang, G.-P., et al., Effects of acute hypoxia and reoxygenation on physiological and immune responses and redox balance of Wuchang bream (Megalobrama amblycephala Yih, 1955), Front. Physiol., 2017, vol. 8, artic. ID 375. https://doi.org/10.3389/fphys.2017.00375.

  13. Chew, S.F., Gan, J., and Ip, Y.K., Nitrogen metabolism and excretion in the swamp eel, Monopterus albus, during 6 or 40 days of estivation in mud, Physiol. Biochem. Zool., 2005, vol. 78, no. 4, pp. 620–629.

    Article  CAS  Google Scholar 

  14. Danovaro, R., Dell’Anno, A., Pusceddu, A., et al., The first Metazoa living in permanently anoxic conditions, BMC Biol., 2010, vol. 8, no. 1, artic. ID 30. https://doi.org/10.1186/1741-7007-8-30.

  15. El Albani, A., Bengtson, S., Canfield, D.E., et al., Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago, Nature, 2010, vol. 466, pp. 100–104.

    Article  CAS  Google Scholar 

  16. Gewin, V., Oceanography: Dead in the water, Nature, 2010, vol. 466, pp. 812–814.

    Article  CAS  Google Scholar 

  17. Chiocchia, G. and Motais, R., Effect of catecholamines on deformability of red cells from trout: Relative roles of cyclic AMP and cell volume, J. Physiol., 1989, vol. 412, no. 1, pp. 321–332.

    Article  CAS  Google Scholar 

  18. Jahns, R., Borgese, F., Lindenthal, S., et al., Trout red blood cell arrestin (TRCarr), a novel member of the arrestin family: Cloning, immunoprecipitation and expression of recombinant TRCarr, Biochem. J., 1996, vol. 316, no. 2, pp. 497–506.

    Article  CAS  Google Scholar 

  19. Jensen, F.B., Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport, Acta Physiol. Scand., 2004, vol. 182, no. 3, pp. 215–227.

    Article  CAS  Google Scholar 

  20. Joyce, S., The dead zones: Oxygen-starved coastal waters, Environ. Health Perspect., 2000, vol. 108, no. 3, pp. A120–A125.

    Article  CAS  Google Scholar 

  21. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    Article  CAS  Google Scholar 

  22. Lushchak, V.I. and Bagnyukova, T.V., Effects of different environmental oxygen levels on free radical processes in fish, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2006, vol. 144, pp. 283–289.

    Article  Google Scholar 

  23. Mansouri, A., Methemoglobin formation and reduction in relation to hemoglobin oxygen affinity, Experientia, 1981, vol. 37, pp. 95–96.

    Article  CAS  Google Scholar 

  24. Middelburg, J.J. and Levin, L.A., Coastal hypoxia and sediment biogeochemistry, Biogeosciences, 2009, vol. 6, pp. 1273–1293.

    Article  CAS  Google Scholar 

  25. Mommsen, T.P., French, C.J., and Hochachka, P.W., Sites and patterns of protein and amino acid utilization during the spawning migration of salmon, Can. J. Zool., 1980, vol. 58, no. 10, pp. 1785–1799.

    Article  CAS  Google Scholar 

  26. Olander, C.P. and Parr, C.E., Jr., Methemoglobin in hypoxic rats, Experientia, 1977, vol. 33, pp. 1656–1657.

    Article  CAS  Google Scholar 

  27. Perry, S.F., Montpetit, C.J., Julio, A.E., and Moore, K., The influence of chronic anaemia on catecholamine secretion in the rainbow trout (Oncorhynchus mykiss), J. Comp. Physiol., B, 1999, vol. 169, pp. 335–343.

    Article  CAS  Google Scholar 

  28. Percy, M.J. and Lappin, T.R., Recessive congenital methaemoglobinaemia: cytochrome b 5 reductase deficiency, Br. J. Haematol., 2008, vol. 141, pp. 298–308.

    CAS  PubMed  Google Scholar 

  29. Phillips, M.C., Moyes, C.D., and Tufts, B.L., The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells, J. Exp. Biol., 2000, vol. 203, pp. 1039–1045.

    Article  CAS  Google Scholar 

  30. Soldatov, A.A., Physiological aspects of effects of urethane anesthesia on the organism of marine fishes, Hydrobiol. J., 2005, vol. 41, no. 1, pp. 113–126.

    Article  Google Scholar 

  31. Soldatov, A.A., Andreenko, T.I., Sysoeva, I.V., and Sysoev, A.A., Tissue specificity of metabolism in the bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia, J. Evol. Biochem. Physiol., 2009, vol. 45, pp. 349–355.

    Article  CAS  Google Scholar 

  32. Soldatov, A.A., Andreeva, A.Yu., Novitskaya, V.N., and Parfenova, I.A., Coupling of membrane and metabolic functions in nucleated erythrocytes of Scorpaena porcus L. under hypoxia in vivo and in vitro, J. Evol. Biochem. Physiol., 2014, vol. 50, pp. 409–415.

    Article  CAS  Google Scholar 

  33. Soldatov, A.A., Gostyukhina, O.L., and Golovina, I.V., Functional states of antioxidant enzymatic complex of tissues of Mytillus galloprovincialis Lam. under conditions of oxidative stress, J. Evol. Biochem. Physiol., 2014, vol. 50, pp. 206–214.

    Article  CAS  Google Scholar 

  34. Soldatov, A.A. and Parfenova, I.A., The methemoglobin blood level and stability of circulating erythrocytes of the rockfish Scorpaena porcus to osmotic shock under conditions of experimental hypoxia, J. Evol. Biochem. Physiol., 2001, vol. 37, pp. 622–625.

    Article  CAS  Google Scholar 

  35. Stara, A., Machova, J., and Velisek, J., Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in early life stages of common carp (Cyprinus carpio L.), Neuroendocrinol. Lett., 2012, vol. 33, suppl. 3, pp. 130–135.

    CAS  PubMed  Google Scholar 

  36. Stoeck, T., Taylor, G.T., and Epstein, S.S., Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea), Appl. Environ. Microbiol., 2003, vol. 69, no. 9, pp. 5656–5663.

    Article  CAS  Google Scholar 

  37. Tiihonen, K. and Nikinmaa, M., Substrate utilization by carp (Cyprinus carpio) erythrocytes, J. Exp. Biol., 1991, vol. 161, pp. 509–514.

    Article  CAS  Google Scholar 

  38. Tufts, B., In vitro evidence for sodium-dependent pH regulation in sea lamprey (Petromyzon marinus) red blood cells, Can. J. Zool., 1992, vol. 70, pp. 411–416.

    Article  CAS  Google Scholar 

  39. Van Waarde, A., Biochemistry of non-protein nitrogenous compounds in fish including the use of amino acids for anaerobic energy production, Comp. Biochem. Physiol., Part B: Comp. Biochem., 1988, vol. 91, no. 2, pp. 207–228.

    Google Scholar 

  40. Wallace, W.J., Houtchens, R.A., Maxwell, J.C., and Caughey, W.S., Mechanism of autooxidation for hemoglobins and myoglobins: Promotion of superoxide production by protons and anions, J. Biol. Chem., 1982, vol. 257, pp. 4966–4977.

    Article  CAS  Google Scholar 

  41. Wells, R.M.G., Blood-gas transport and hemoglobin function: Adaptations for functional and environmental hypoxia, Fish Physiol., 2009, vol. 27, pp. 255–299.

    Article  Google Scholar 

  42. White, A., Handler, Ph., Smith, E.L., et al., Principles of Biochemistry, New York: McGraw-Hill, 1978, 6th ed., vol. 3.

    Google Scholar 

  43. Wood, C.M. and Simmons, H., The conversion of plasma HCO3 to CO2 by rainbow trout red blood cells in vitro: Adrenergic inhibition and the influence of oxygenation status, Fish Physiol. Biochem., 1994, vol. 12, pp. 445–454.

    Article  CAS  Google Scholar 

Download references

Funding

This study was conducted within the framework of the State Program no. AAAA-A18-118021490093-4 and supported in part by the Russian Foundation for Basic Research (project no. 20-04-00037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Soldatov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by E. Shvetsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, A.A., Andreenko, T.I., Kukhareva, T.A. et al. Catalase and Superoxide Dismutase Activity in Erythrocytes and the Methemoglobin Level in Blood of the Black Scorpionfish (Scorpaena porcus, Linnaeus 1758) Exposed to Acute Hypoxia. Russ J Mar Biol 47, 283–289 (2021). https://doi.org/10.1134/S106307402104012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106307402104012X

Keywords:

Navigation