Skip to main content

Advertisement

Log in

Preparation and characterization of microrod hydroxyapatite bundles obtained from oyster shells through microwave irradiation

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) is similar to the inorganic component of human bone and teeth. Because of its excellent biocompatibility, bioactivity, and osteoconductivity, HA is widely used as a biomedical material. However, its biodegradability is poor. Oyster shells are mainly composed of CaCO3 and other trace elements, such as Mg, Sr, K, and Na. As a raw material for synthesizing HA, oyster shells not only serve as biowaste for efficient utilization but also contain various trace elements that are beneficial to the growth of bone tissue; they can thus enhance the overall biological performance of the bioceramic. In this study, microrod HA bundles were successfully synthesized using microwave irradiation with the aid of ethylene diamine tetra-acetic acid disodium salt (Na2EDTA) as a chelating agent. The formation of microrod HA bundles was expected to promote the material’s biodegradability, and the bundles could have potential in the field of bone tissue repair. The optimal parameters for synthesis of microrod HA bundles were a Na2EDTA-to-oyster-shell-powder ratio of 2/2 and a microwave power of 700 W. The microrod HA bundles degraded more easily than did the irregular HA aggregates, indicating that the morphology of the microrod bundles resulted in a higher HA degradation rate. Bioactivity tests revealed that numerous spherical apatite particles formed on the surface of the microrod HA bundles, indicating that they had excellent bioactivity. Finally, the microrod HA bundles had high protein adsorption capability, which facilitates the control of cell attachment and proliferation and is thus beneficial to tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Panda, S., Biswas, C.K., Paul, S.: A comprehensive review on the preparation and application of calcium hydroxyapatite: a special focus on atomic doping methods for bone tissue engineering. Ceram. Int. (2021) in press

  2. Rujitanapanich, S., Kumpapan, P., Wanjanoi, P.: Synthesis of hydroxyapatite from oyster shell via precipitation. Energy. Proc. 56, 112–117 (2014)

    Article  CAS  Google Scholar 

  3. Ben-Arfa, B.A.E., Salvado, I.M.M., Ferreira, J.M.F., Pullar, R.C.: Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time. Mater. Sci. Eng. C 70, 796–804 (2017)

    Article  CAS  Google Scholar 

  4. Sun, J., Zheng, X., et al.: Monodisperse selenium-substituted hydroxyapatite: controllable synthesis and biocompatibility. Mater. Sci. Eng. C 73, 596–602 (2017)

    Article  CAS  Google Scholar 

  5. Shi, H., Zhou, Z., Li, W., Fan, Y., Li, Z., Wei, J.: Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Curr. Comput.-Aided Drug Des. 11, 149 (2021)

    CAS  Google Scholar 

  6. Wu, S.C., Hsu, H.C., Hsu, S.K., Chang, Y.C., Ho, W.F.: Effects of heat treatment on the synthesis of hydroxyapatite from eggshell powders. Ceram. Int. 41, 10718–10724 (2015)

    Article  CAS  Google Scholar 

  7. Wu, S.C., Tsou, H.K., et al.: A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram. Int. 39, 8183–8188 (2013)

    Article  CAS  Google Scholar 

  8. Wu, S.C., Hsu, H.C., Hsu, S.K., Tseng, C.P., Ho, W.F.: Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Adv. Powder Technol. 28, 1154–1158 (2017)

    Article  CAS  Google Scholar 

  9. Wu, S.C., Hsu, H.C., Wu, Y.N., Ho, W.F.: Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment. Mater. Charact. 62, 1180–1187 (2011)

    Article  CAS  Google Scholar 

  10. Karacan, I., Cox, N., et al.: The synthesis of hydroxyapatite from artificially grown Red Sea hydrozoan coral for antimicrobacterial drug delivery system applications. J. Aust. Ceram. Soc. 57, 399–407 (2021)

    Article  CAS  Google Scholar 

  11. Ha, L.V., Mai, D.N.T., Cao, H.T.: Fabrication of nano-or micro-powder for hydroxyapatite particles derived from bovine bone. Sci. Technol. Dev. J. 24, 875–883 (2021)

    Article  Google Scholar 

  12. Chai, Y., Tagaya, M.: Simple preparation of hydroxyapatite derived from fish scales. Mater. Lett. 222, 156–159 (2018)

    Article  CAS  Google Scholar 

  13. Zhou, H., Yang, M., et al.: Preparation of Chinese mystery snail shells derived hydroxyapatite with different morphology using condensed phosphate sources. Ceram. Int. 42, 16671–16676 (2016)

    Article  CAS  Google Scholar 

  14. Hoppe, A., Guldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011)

    Article  CAS  Google Scholar 

  15. Tucker, K.L., Hannan, M.T., et al.: Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am. J. Clin. Nutr. 69, 727–736 (1999)

    Article  CAS  Google Scholar 

  16. Yokota, T., Miki, T., et al.: Fabrication and biological evaluation of hydroxyapatite ceramics including bone minerals. J. Ceram. Soc. Jpn. 126, 99–108 (2018)

    Article  CAS  Google Scholar 

  17. Sadat-Shojai, M., Khorasani, M.T., Dinpanah-Khoshdargi, E., Jamshidi, A.: Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9, 7591–7621 (2013)

    Article  CAS  Google Scholar 

  18. Pramanik, S., Agarwal, A.K., Rai, K., Garg, A.: Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int. 33, 419–426 (2007)

    Article  CAS  Google Scholar 

  19. Zakhireh, S., Adibkia, K., Beygi-Khosrowshahi, Y., Barzegar-Jalali, M.: Osteogenesis promotion of selenium-doped hydroxyapatite for application as bone scaffold. Biol. Trace Elem. Res. 199, 1802–1811 (2021)

    Article  CAS  Google Scholar 

  20. Nunez, D., Elgueta, E., Varaprasad, K., Oyarzun, P.: Hydroxyapatite nanocrystals synthesized from calcium rich bio-wastes. Mater. Lett. 230, 64–68 (2018)

    Article  CAS  Google Scholar 

  21. Daryan, S.H., Javadpour, J., Khavandi, A., Erfan, M.: Morphological evolution on the surface of hydrothermally synthesized hydroxyapatite microspheres in the presence of EDTMP. Ceram. Int. 44, 19743–19750 (2018)

    Article  CAS  Google Scholar 

  22. Xiao, W., Gao, H., Qu, M., Liu, X., Zhang, J., Li, H.: Rapid microwave synthesis of hydroxyapatite phosphate microspheres with hierarchical porous structure. Ceram. Int. 44, 6144–6151 (2018)

    Article  CAS  Google Scholar 

  23. Kumar, G.S., Thamizhavel, A., Girija, E.: Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications. Mater. Lett. 76, 198–200 (2012)

    Article  CAS  Google Scholar 

  24. Goh, K.W., Wong, Y.H., et al.: Effect of pH on the properties of eggshell-derived hydroxyapatite bioceramic synthesized by wet chemical method assisted by microwave irradiation. Ceram. Int. 47, 8879–8887 (2021)

    Article  CAS  Google Scholar 

  25. Bakan, F., Laçin, O., Sarac, H.: A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol. 233, 295–302 (2013)

    Article  CAS  Google Scholar 

  26. Hannink, G., Arts, J.C.: Bioresorbability, porosity and mechanical strength of bone substitutes: what is optimal for bone regeneration? Injury 42, S22–S25 (2011)

    Article  Google Scholar 

  27. Khiri, M.Z.A., Matori, K.A., et al.: Crystallization behavior of low-cost biphasic hydroxyapatite/β-tricalcium phosphate ceramic at high sintering temperatures derived from high potential calcium waste sources. Results Phys. 12, 638–644 (2019)

    Article  Google Scholar 

  28. Lin, K., Wu, C., Chang, J.: Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater. 10, 4071–4102 (2014)

    Article  CAS  Google Scholar 

  29. Lai, W., Chen, C., Ren, X., Lee, I.-S., Jiang, G., Kong, X.: Hydrothermal fabrication of porous hollow hydroxyapatite microspheres for a drug delivery system. Mater. Sci. Eng. C 62, 166–172 (2016)

    Article  CAS  Google Scholar 

  30. Sánchez-Campos, D., Reyes Valderrama, M.I., et al.: Modulated monoclinic hydroxyapatite: the effect of pH in the microwave assisted method. Minerals 11, 314 (2021)

    Article  Google Scholar 

  31. Arce, H., Montero, M.L., Sáenz, A., Castaño, V.M.: Effect of pH and temperature on the formation of hydroxyapatite at low temperatures by decomposition of a Ca-EDTA complex. Polyhedron 23, 1897–1901 (2004)

    Article  CAS  Google Scholar 

  32. Salarian, M., Solati-Hashjin, M., Shafiei, S.S., Salarian, R., Nemati, Z.A.: Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol. Ceram. Int. 35, 2563–2569 (2009)

    Article  CAS  Google Scholar 

  33. Chen, M., Jiang, D., Li, D., Zhu, J., Li, G., Xie, J.: Controllable synthesis of fluorapatite nanocrystals with various morphologies: effects of pH value and chelating reagent. J. Alloys Compd. 485, 396–401 (2009)

    Article  CAS  Google Scholar 

  34. Predoi, S.A., Ciobanu, C.S., et al.: Preparation of porous hydroxyapatite using cetyl trimethyl ammonium bromide as surfactant for the removal of lead ions from aquatic solutions. Polymers 13, 1617 (2021)

    Article  CAS  Google Scholar 

  35. Zuo, G., Wei, et al.: Morphology controlled synthesis of nano-hydroxyapatite using polyethylene glycol as a template. J. Alloys Compd. 692, 693–697 (2017)

    Article  CAS  Google Scholar 

  36. Fathi, M.H., Hanifi, A., Mortazavi, V.: Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol. 202, 536–542 (2008)

    Article  CAS  Google Scholar 

  37. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)

    Article  CAS  Google Scholar 

  38. Šupová, M.: Substituted hydroxyapatites for biomedical applications: a review. Ceram. Int. 41, 9203–9231 (2015)

    Article  Google Scholar 

  39. Kannan, S., Rocha, J.H.G., Ferreira, J.M.F.: Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites. J. Mater. Chem. 16, 286–291 (2006)

    Article  CAS  Google Scholar 

  40. Safarzadeh, M., Ramesh, S., et al.: Effect of multi-ions doping on the properties of carbonated hydroxyapatite bioceramic. Ceram. Int. 45, 3473–3477 (2019)

    Article  CAS  Google Scholar 

  41. Kaygili, O., Ates, T., Keser, S., Keser, S., Al-Ghamdi, A.A., Yakuphanoglu, F.: Controlling of dielectrical properties of hydroxyapatite by ethylenediamine tetraacetic acid (EDTA) for bone healing applications. Spectrochim. Acta A 129, 268–273 (2014)

    Article  CAS  Google Scholar 

  42. Macha, I.J., Ben-Nissan, B., et al.: Biocompatibility of a new biodegradable polymer-hydroxyapatite composite for biomedical applications. J. Drug Deliv. Sci. Technol. 38, 72–77 (2017)

    Article  CAS  Google Scholar 

  43. Kumar, G.S., Thamizhavel, A., Yokogawa, Y., Kalkura, S.N., Girija, E.K.: Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater. Chem. Phys. 134, 1127–1135 (2012)

    Article  CAS  Google Scholar 

  44. Zhu, R., Yu, R., Yao, J., Wang, D., Ke, J.: Morphology control of hydroxyapatite through hydrothermal process. J. Alloys Compd. 457, 555–559 (2008)

    Article  CAS  Google Scholar 

  45. Kee, C.C., Ismail, H., Ahmad-Fauzi, M.N.: Effect of synthesis technique and carbonate content on the crystallinity and morphology of carbonated hydroxyapatite. J. Mater. Sci. Technol. 29, 761–764 (2013)

    Article  CAS  Google Scholar 

  46. Li, Y., Wang, Y., et al.: Controllable synthesis of biomimetic hydroxyapatite nanorods with high osteogenic bioactivity. ACS Biomater. Sci. Eng. 6, 320–328 (2020)

    Article  CAS  Google Scholar 

  47. Nga, N.K., Chau, N.T.T., Viet, P.H.: Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering. Colloids Surf. B 172, 769–778 (2018)

    Article  CAS  Google Scholar 

  48. Huang, B., Lou, Y., et al.: Molecular dynamics simulations of adsorption and desorption of bone morphogenetic protein-2 on textured hydroxyapatite surfaces. Acta Biomater. 80, 121–130 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the partial financial support of Ministry ofScience and Technology of Taiwan (MOST 108-2813-C-390-014-E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fu Ho.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shih-Ching Wu and Yu-Lin Kao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SC., Kao, YL., Lu, YC. et al. Preparation and characterization of microrod hydroxyapatite bundles obtained from oyster shells through microwave irradiation. J Aust Ceram Soc 57, 1541–1551 (2021). https://doi.org/10.1007/s41779-021-00657-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-021-00657-3

Keywords

Navigation