Skip to main content
Log in

Framework for the Classification of Imbalanced Structured Data Using Under-sampling and Convolutional Neural Network

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Among machine learning techniques, classification techniques are useful for various business applications, but classification algorithms perform poorly with imbalanced data. In this study, we propose a classification technique with improved binary classification performance on both the minority and majority classes of imbalanced structured data. The proposed framework is composed of three steps. In the first step, a balanced training set is created via under-sampling. Then, each example is converted into an image depicting a line graph. In the last step, a Convolutional Neural Network (CNN) is trained using the images. In the experiments, we selected six datasets from the UCI Repository and applied the proposed framework to them. The proposed model achieved the best receiver operating characteristic (ROC) curve and Balanced Accuracy (BA) on all the datasets and five datasets, respectively. This demonstrates that the combination of under-sampling and CNNs is a viable approach for imbalanced structure data classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Hamid, O., Deng, L., & Yu, D. (2013) Exploring convolutional neural network structures and optimization techniques for speech recognition. In Interspeech (Vol. 11, pp. 73–5)

  • Ando, S. (2016). Classifying imbalanced data in distance-based feature space. Knowledge and Information Systems, 46(3), 707–730

    Article  Google Scholar 

  • Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: a comparative analysis. In 2017 International Conference on Computing Networking and Informatics (ICCNI) (pp. 1–9). IEEE

  • Balachandran, P. V., Xue, D., Theiler, J., Hogden, J., Gubernatis, J. E., & Lookman, T. (2018). Importance of feature selection in machine learning and adaptive design for materials. In Materials Discovery and Design (pp. 59–79). Springer

  • Bang, C., Lee, J., & Rao, R. (2021). The Egyptian protest movement in the twittersphere: an investigation of dual sentiment pathways of communication. International Journal of Information Management, 58. https://doi.org/10.1016/j.ijinfomgt.2021.102328

  • Barandela, R., Valdovinos, R. M., & Sánchez, J. S. (2003). New applications of ensembles of classifiers. Pattern Analysis & Applications, 6(3), 245–256

    Article  Google Scholar 

  • Benfeldt, O., Persson, J. S., & Madsen, S. (2019). Data governance as a collective action problem. Information Systems Frontiers (pp. 1–15). Springer

  • Bessi, A., & Ferrara, E. (2016). Social bots distort the 2016 US presidential election online discussion. First Monday, 21, 11–17

    Google Scholar 

  • Beyan, C., & Fisher, R. (2015). Classifying imbalanced data sets using similarity based hierarchical decomposition. Pattern Recognition, 48(5), 1653–1672

    Article  Google Scholar 

  • Braytee, A., Liu, W., & Kennedy, P. (2016). A cost-sensitive learning strategy for feature extraction from imbalanced data. In International Conference on Neural Information Processing (pp. 78–86). Springer

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140

    Article  Google Scholar 

  • Bunkhumpornpat, C., Sinapiromsaran, K., & Lursinsap, C. (2009). Safe-Level-Smote: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 475–482). Springer

  • Castro, C. L., & Braga, A. P. (2013). Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data. IEEE Transactions on Neural Networks and Learning Systems, 24(6), 888–899

    Article  Google Scholar 

  • Chan, K. K., & Misra, S. (1990). Characteristics of the opinion leader: a new dimension. Journal of Advertising, 19(3), 53–60. Taylor & Francis

  • Chawla, N. V., Lazarevic, A., Hall, L. O., & Bowyer, K. W. (2003). SMOTEBoost: Improving prediction of the minority class in boosting. In European Conference on Principles of Data Mining and Knowledge Discovery (pp. 107–119). Springer

  • Chen, S., He, H., & Garcia, E. A. (2010). RAMOBoost: ranked minority oversampling in boosting. IEEE Transactions on Neural Networks, 21(10), 1624–1642

    Article  Google Scholar 

  • Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). https://doi.org/10.1145/2939672.2939785

  • Chen, X., & Wasikowski, M. (2008). Fast: A roc-based feature selection metric for small samples and imbalanced data classification problems. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 124–132). ACM

  • Chen, Z. Y., Fan, Z. P., & Sun, M. (2012). A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. European Journal of Operational Research, 223(2), 461–472

    Article  Google Scholar 

  • Colton, D., & Hofmann, M. (2019). Sampling techniques to overcome class imbalance in a cyberbullying context. Journal of Computer-Assisted Linguistic Research, 3(1), 21. https://doi.org/10.4995/jclr.2019.11112

    Article  Google Scholar 

  • D’Addabbo, A., & Maglietta, R. (2015). Parallel selective sampling method for imbalanced and large data classification. Pattern Recognition Letters, 62, 61–67

    Article  Google Scholar 

  • Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: a systematic literature survey. Applied Soft Computing, 91, 106263. Elsevier

  • Datta, S., & Das, S. (2015). Near-bayesian support vector machines for imbalanced data classification with equal or unequal misclassification costs. Neural Networks, 70, 39–52

  • Dellarocas, C., & Wood, C. A. (2008). The sound of silence in online feedback: estimating trading risks in the presence of reporting bias. Management Science, 54, 3460–3476

    Article  Google Scholar 

  • Díez-Pastor, J. F., Rodríguez, J. J., García-Osorio, C., & Kuncheva, L. I. (2015). Random balance: ensembles of variable priors classifiers for imbalanced data. Knowledge-Based Systems, 85, 96–111

    Article  Google Scholar 

  • Drummond, C., & Holte, R. C. (2003). C4. 5, Class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In Workshop on Learning from Imbalanced Datasets II (Vol. 11, pp. 1–8). Citeseer

  • Dullaghan, C., & Rozaki, E. (2017). Integration of machine learning techniques to evaluate dynamic customer segmentation analysis for mobile customers. ArXiv Preprint ArXiv:1702.02215

  • Dwivedi, Y. K., Kelly, G., Janssen, M., Rana, N. P., Slade, E. L., & Clement, M. (2018). Social media: the good, the bad, and the ugly. Information Systems Frontiers, 20(3), 419–423. Springer

  • Ezenkwu, C. P., Ozuomba, S., & Kalu, C. (2015). Application of K-Means Algorithm for Efficient Customer Segmentation: A Strategy for Targeted Customer Services. Citeseer

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  • Fertier, A., Barthe-Delanoë, A. M., Montarnal, A., Truptil, S., & Bénaben, F. (2020). A new emergency decision support system: the automatic interpretation and contextualisation of events to model a crisis situation in real-time,. Decision Support Systems, 133, 113260. Elsevier

  • Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal-Japanese Society For Artificial Intelligence, 14, 771–7801612

    Google Scholar 

  • Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. Elsevier

  • Galar, M., Fernández, A., Barrenechea, E., & Herrera, F. (2013). EUSBoost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognition, (46(12), 3460–3471

    Article  Google Scholar 

  • Gao, X., Chen, Z., Tang, S., Zhang, Y., & Li, J. (2016). Adaptive weighted imbalance learning with application to abnormal activity recognition. Neurocomputing, 173, 1927–1935

  • García, V., Sánchez, J. S., Rodríguez-Picón, L. A., Méndez-González, L. C., & de Jesús Ochoa-Domínguez, H. (2019). Using regression models for predicting the product quality in a tubing extrusion process. Journal of Intelligent Manufacturing, 30(6), 2535–2544. Springer

  • García-Pedrajas, N., & García-Osorio, C. (2013). Boosting for class-imbalanced datasets using genetically evolved supervised non-linear projections. Progress in Artificial Intelligence, 2(1), 29–44

    Article  Google Scholar 

  • Geller, J., Scherl, R., & Perl, Y. (2002). Mining the web for target marketing information. Proceedings of CollECTeR, Toulouse, France

  • Ghazikhani, A., Monsefi, R., & Yazdi, H. S. (2013). Ensemble of online neural networks for non-stationary and imbalanced data streams. Neurocomputing, 122, 535–544

  • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition (pp. 580–587). IEEE. https://doi.org/10.1109/CVPR.2014.81

  • Guo, C., & Berkhahn, F. (2016). Entity embeddings of categorical variables. ArXiv Preprint ArXiv:1604.06737

  • Guo, X., Yin, Y., Dong, C., Yang, G., & Zhou, G. (2008). On the class imbalance problem. In 2008 Fourth International Conference on Natural Computation (pp. 192–201). IEEE. https://doi.org/10.1109/ICNC.2008.871

  • Gupta, Y. (2018). Selection of important features and predicting wine quality using machine learning techniques. Procedia Computer Science, 125, 305–312. Elsevier

  • Ha, J., & Lee, J. S. (2016). A new under-sampling method using genetic algorithm for imbalanced data classification. In Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication (p. 95). ACM

  • Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). Learning from class-imbalanced data: review of methods and applications. Expert Systems with Applications, 73, 220–239

    Article  Google Scholar 

  • Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In International Conference on Intelligent Computing (pp. 878–887). Springer

  • He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (pp. 1322–1328). IEEE

  • Hosseini, H., Xiao, B., Jaiswal, M., & Poovendran, R. (2017). On the limitation of convolutional neural networks in recognizing negative images. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 352–358). IEEE

  • Hu, S., Liang, Y., Ma, L., & He, Y. (2009). MSMOTE: Improving classification performance when training data is imbalanced. In Computer Science and Engineering, 2009. WCSE’09. Second International Workshop On (Vol. 2, pp. 13–17). IEEE

  • Huang, C. K., Wang, T., & Huang, T. Y. (2020). Initial evidence on the impact of big data implementation on firm performance. Information Systems Frontiers, 22(2), 475–487. Springer

  • Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reducing internal covariate shift. ArXiv Preprint ArXiv:1502.03167

  • Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: a systematic study. Intelligent Data Analysis, 6(5), 429–449

    Article  Google Scholar 

  • Jing, L., Zhao, M., Li, P., & Xu, X. (2017). A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement, 111, 1–10

  • Johnson, J. M., & Khoshgoftaar, T. M. (2020). The effects of data sampling with deep learning and highly imbalanced big data. Information Systems Frontiers, 22(5), 1113–1131. Springer

  • Kansal, T., Bahuguna, S., Singh, V., & Choudhury, T. (2018). Customer segmentation using K-Means clustering. In 2018 International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS) (pp. 135–139). IEEE

  • Kim, S., Kim, H., & Namkoong, Y. (2016). Ordinal classification of imbalanced data with application in emergency and disaster information services. IEEE Intelligent Systems, 31(5), 50–56

    Article  Google Scholar 

  • Kizgin, H., Jamal, A., Dey, B. L., & Rana, N. P. (2018). The impact of social media on consumers’ acculturation and purchase intentions. Information Systems Frontiers, 20(3), 503–514. Springer

  • Kuko, M., & Pourhomayoun, M. (2020). Single and clustered cervical cell classification with ensemble and deep learning methods. Information Systems Frontiers, (22(5), 1039–1051. https://doi.org/10.1007/s10796-020-10028-1

    Article  Google Scholar 

  • Lane, P. C., Clarke, D., & Hender, P. (2012). On developing robust models for favourability analysis: model choice, feature sets and imbalanced data. Decision Support Systems, (53(4), 712–718

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 7553436

    Article  Google Scholar 

  • LeCun, Y., Haffner, P., Bottou, L., & Bengio, Y. (1999). Object recognition with gradient-based learning. In Shape, Contour and Grouping in Computer Vision (pp. 319–345). Springer

  • Li, Q., Yang, B., Li, Y., Deng, N., & Jing, L. (2013). Constructing support vector machine ensemble with segmentation for imbalanced datasets. Neural Computing and Applications, 22(1), 249–256

    Article  Google Scholar 

  • Li, Z., Kamnitsas, K., & Glocker, B. (2019). Overfitting of neural nets under class imbalance: analysis and improvements for segmentation. ArXiv:1907.10982 [Cs, Stat]. http://arxiv.org/abs/1907.10982

  • Liang, J., Bai, L., Dang, C., & Cao, F. (2012). The K-Means-Type algorithms versus imbalanced data distributions. IEEE Transactions on Fuzzy Systems, 20(4), 728–745

  • Lin, W. C., Tsai, C. F., Hu, Y. H., & Jhang, J. S. (2017). Clustering-based undersampling in class-imbalanced data. Information Sciences, 409, 17–26

    Article  Google Scholar 

  • Liu, B., & Tsoumakas, G. (2020). Dealing with class imbalance in classifier chains via random undersampling. Knowledge-Based Systems, 192, 105292. https://doi.org/10.1016/j.knosys.2019.105292

    Article  Google Scholar 

  • Liu, J., Timsina, P., & El-Gayar, O. (2018). A comparative analysis of semi-supervised learning: the case of article selection for medical systematic reviews. Information Systems Frontiers, 20(2), 195–207. https://doi.org/10.1007/s10796-016-9724-0

    Article  Google Scholar 

  • Liu, X. Y., Wu, J., & Zhou, Z. H. (2009). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539–550

    Article  Google Scholar 

  • López, V., Río, D., Benítez, S., & Herrera, F. (2015). Cost-sensitive linguistic fuzzy rule based classification systems under the mapreduce framework for imbalanced big data. Fuzzy Sets and Systems, 258, 5–38

    Article  Google Scholar 

  • Loyola-González, O., Martínez-Trinidad, J. F., Carrasco-Ochoa, J. A., & García-Borroto, M. (2016). Study of the impact of resampling methods for contrast pattern based classifiers in imbalanced databases. Neurocomputing, 175, 935–947

  • Lu, J., Zhang, C., & Shi, F. (2016). A classification method of imbalanced data base on PSO algorithm. In International Conference of Pioneering Computer Scientists, Engineers and Educators (pp. 121–134). Springer

  • Maldonado, S., & López, J. (2014). Imbalanced data classification using second-order cone programming support vector machines. Pattern Recognition, 47(5), 2070–2079

    Article  Google Scholar 

  • Mäntymäki, M., Hyrynsalmi, S., & Koskenvoima, A. (2020). How do small and medium-sized game companies use analytics? An attention-based view of game analytics. Information Systems Frontiers, 22(5), 1163–1178. Springer

  • Mao, W., Wang, J., He, L., & Tian, Y. (2016). two-stage hybrid extreme learning machine for sequential imbalanced data. In Proceedings of ELM-2015 (Vol. 1, pp. 423–433). Springer

  • Maratea, A., Petrosino, A., & Manzo, M. (2014). Adjusted F-Measure and Kernel scaling for imbalanced data learning. Information Sciences, 257, 331–341

    Article  Google Scholar 

  • Moepya, S. O., Akhoury, S. S., & Nelwamondo, F. V. (2014). Applying cost-sensitive classification for financial fraud detection under high class-imbalance. In 2014 IEEE International Conference on Data Mining Workshop (pp.183–192). IEEE

  • Moreo, A., Esuli, A., & Sebastiani, F. (2016). Distributional random oversampling for imbalanced text classification. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp.805–808). ACM

  • Moscato, V., Picariello, A., & Sperlí, G. (2021). A benchmark of machine learning approaches for credit score prediction. Expert Systems with Applications, 165, 113986. https://doi.org/10.1016/j.eswa.2020.113986

  • Mustafaraj, E., Finn, S., Whitlock, C., & Metaxas, P. T. (2011). Vocal minority versus silent majority: discovering the opionions of the long tail. In 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing (pp. 103–110). IEEE

  • Nekooeimehr, I., & Lai-Yuen, S. K. (2016). Adaptive Semi-Unsupervised Weighted Oversampling (A-SUWO) for imbalanced datasets. Expert Systems with Applications, 46, 405–416

    Article  Google Scholar 

  • Oh, S., Lee, M. S., & Zhang, B. T. (2010). Ensemble learning with active example selection for imbalanced biomedical data classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(2), 316–325

    Google Scholar 

  • Ozan, Å. (2018). A case study on customer segmentation by using machine learning methods. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (pp. 1–6). IEEE

  • Perlich, C., Dalessandro, B., Raeder, T., Stitelman, O., & Provost, F. (2014). Machine learning for targeted display advertising: transfer learning in action. Machine Learning, 95, 1. https://doi.org/10.1007/s10994-013-5375-2

    Article  Google Scholar 

  • Powers, D. (2011). Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. International Journal of Machine Learning Technology (2:1), pp 37–63

  • Quinlan, J. R. (2014). C4. 5: Programs for Machine Learning. Elsevier

  • Rahman, M. M., & Davis, D. N. (2013). Addressing the class imbalance problem in medical datasets. International Journal of Machine Learning and Computing, 224–228. https://doi.org/10.7763/IJMLC.2013.V3.307

  • Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization?. In Advances in Neural Information Processing Systems (pp. 2483–2493)

  • Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). RUSBoost: a hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(1), 185–197. https://doi.org/10.1109/TSMCA.2009.2029559

    Article  Google Scholar 

  • Shao, Y. H., Chen, W. J., Zhang, J. J., Wang, Z., & Deng, N. Y. (2014). An efficient weighted Lagrangian twin support vector machine for imbalanced data classification. Pattern Recognition, 47(9), 3158–3167

    Article  Google Scholar 

  • Sharma, S., Bellinger, C., Krawczyk, B., Zaiane, O., & Japkowicz, N. (2018). Synthetic oversampling with the majority class: a new perspective on handling extreme imbalance, In 2018 IEEE International Conference on Data Mining (ICDM) (pp. 447–456). IEEE. https://doi.org/10.1109/ICDM.2018.00060

  • Smiti, S., & Soui, M. (2020). Bankruptcy prediction using deep learning approach based on borderline SMOTE. Information Systems Frontiers, 22(5), 1067–1083. Springer

  • Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-Score and ROC: a family of discriminant measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence (pp. 1015–1021). Springer

  • Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, (45(4), 427–437

    Article  Google Scholar 

  • Song, L., Hou, Y., & Cai, Z. (2014). Recovery-based error estimator for stabilized finite element methods for the stokes equation. Computer Methods in Applied Mechanics and Engineering, 272, 1–16

    Article  Google Scholar 

  • Straube, S., & Krell, M. M. (2014). How to evaluate an agent’s behavior to infrequent events?—Reliable performance estimation insensitive to class distribution. Frontiers in Computational Neuroscience, 8, 43

  • Sun, Y., Kamel, M. S., Wong, A. K., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12), 3358–3378

    Article  Google Scholar 

  • Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., & Zhou, Y. (2015). A novel ensemble method for classifying imbalanced data. Pattern Recognition, 48(5), 1623–1637

    Article  Google Scholar 

  • Sundarkumar, G. G., & Ravi, V. (2015). A novel hybrid undersampling method for mining unbalanced datasets in banking and insurance. Engineering Applications of Artificial Intelligence, 37, 368–377

    Article  Google Scholar 

  • Tahir, M. A., Kittler, J., & Yan, F. (2012). Inverse random under sampling for class imbalance problem and its application to multi-label classification. Pattern Recognition, 45(10), 3738–3750

    Article  Google Scholar 

  • Tian, H., Chen, S. C., & Shyu, M. L. (2020). Evolutionary programming based deep learning feature selection and network construction for visual data classification. Information Systems Frontiers, 22(5), 1053–1066. Springer

  • Timsina, P., Liu, J., & El-Gayar, O. (2016). Advanced analytics for the automation of medical systematic reviews. Information Systems Frontiers, 18(2), 237–252. Springer

  • Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object localization using convolutional networks. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June, pp. 648–656). IEEE. https://doi.org/10.1109/CVPR.2015.7298664

  • Tsai, C. F., Lin, W. C., Hu, Y. H., & Yao, G. T. (2019). Under-sampling class imbalanced datasets by combining clustering analysis and instance selection. Information Sciences, 477, 47–54

  • Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic, M., & Anderla, A. (2019). Credit card fraud detection-machine learning methods. In 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1–5). IEEE

  • Vong, C. M., Ip, W. F., Chiu, C. C., & Wong, P. K. (2015). Imbalanced learning for air pollution by meta-cognitive online sequential extreme learning machine. Cognitive Computation, 7(3), 381–391

    Article  Google Scholar 

  • Wang, G., Ledwoch, A., Hasani, R. M., Grosu, R., & Brintrup, A. (2019). A generative neural network model for the quality prediction of work in progress products. Applied Soft Computing, 85, 105683. Elsevier

  • Wang, S., & Yao, X. (2009). Diversity analysis on imbalanced data sets by using ensemble models. In Computational Intelligence and Data Mining, 2009. CIDM’09. IEEE Symposium On (pp. 324–331). IEEE

  • Wu, D., Wang, Z., Chen, Y., & Zhao, H. (2016). Mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset. Neurocomputing, 190, 35–49

  • Xu, Y., Yang, Z., Zhang, Y., Pan, X., & Wang, L. (2016). A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification. Knowledge-Based Systems, 95, 75–85

    Article  Google Scholar 

  • Yijing, L., Haixiang, G., Xiao, L., Yanan, L., & Jinling, L. (2016). Adapted ensemble classification algorithm based on multiple classifier system and feature selection for classifying multi-class imbalanced data. Knowledge-Based Systems, 94, 88–104

    Article  Google Scholar 

  • Zhang, C., Gao, W., Song, J., & Jiang, J. (2016). An imbalanced data classification algorithm of improved autoencoder neural network. In 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI) (pp. 95–99). IEEE

  • Zhang, Y., Fu, P., Liu, W., & Chen, G. (2014). Imbalanced data classification based on scaling kernel-based support vector machine. Neural Computing and Applications, 25, 3–4927

    Article  Google Scholar 

  • Zhou, L. (2013). Performance of corporate bankruptcy prediction models on imbalanced dataset: the effect of sampling methods. Knowledge-Based Systems, 41, 16–25

    Article  Google Scholar 

  • Zolbanin, H. M., Delen, D., Crosby, D., & Wright, D. (2019). A predictive analytics-based decision support system for drug courts. Information Systems Frontiers, 1–20. Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Sang Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.S., Bang, C.C. Framework for the Classification of Imbalanced Structured Data Using Under-sampling and Convolutional Neural Network. Inf Syst Front 24, 1795–1809 (2022). https://doi.org/10.1007/s10796-021-10195-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-021-10195-9

Keywords

Navigation