Skip to main content

Advertisement

Log in

The protective effects of 17-β estradiol and SIRT1 against cardiac hypertrophy: a review

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

One of the major causes of morbidity and mortality worldwide is cardiac hypertrophy (CH), which leads to heart failure. Sex differences in CH can be caused by sex hormones or their receptors. The incidence of CH increases in postmenopausal women due to the decrease in female sex hormone 17-β estradiol (E2) during menopause. E2 and its receptors inhibit CH in humans and animal models. Silent information regulator 1 (SIRT1) is a NAD+-dependent HDAC (histone deacetylase) and plays a major role in biological processes, such as inflammation, apoptosis, and oxidative stress responses. Probably SIRT1 because of these effects, is one of the main suppressors of CH and has a cardioprotective effect. On the other hand, estrogen and its agonists are highly efficient in modulating SIRT1 expression. In the present study, we review the protective effects of E2 and SIRT1 against CH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patrizio M, Marano G (2016) Gender differences in cardiac hypertrophic remodeling. Ann Ist Super Sanita 52(2):223–229

    CAS  PubMed  Google Scholar 

  2. Di Minno A, Stornaiuolo M, Novellino E (2019) Molecular Scavengers, Oxidative Stress and Cardiovascular Disease. J Clin Med 8(11)

  3. Zhou L, Ma B, Han X (2016) The role of autophagy in angiotensin II-induced pathological cardiac hypertrophy. J Mol Endocrinol 57(4):R143-r152

    Article  CAS  PubMed  Google Scholar 

  4. McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 34(4):255–262

    Article  CAS  PubMed  Google Scholar 

  5. Berenji K et al (2005) Does load-induced ventricular hypertrophy progress to systolic heart failure? Am J Physiol Heart Circ Physiol 289(1):H8-h16

    Article  CAS  PubMed  Google Scholar 

  6. Frank D et al (2008) Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 51(2):309–318

    Article  CAS  PubMed  Google Scholar 

  7. Weeks KL, McMullen JR (2011) The athlete's heart vs. the failing heart: can signaling explain the two distinct outcomes? Physiology (Bethesda) 26(2):97–105

  8. Bernardo BC et al (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227

    Article  CAS  PubMed  Google Scholar 

  9. Perrino C et al (2006) Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest 116(6):1547–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lyon RC et al (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116(8):1462–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Francis GS, McDonald KM, Cohn JN (1993) Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation 87(5 Suppl):Iv90–6

  12. Maillet M, van Berlo JH, Molkentin JD (2013) Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 14(1):38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schiattarella GG, Hill JA (2015) Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation 131(16):1435–1447

    Article  PubMed  PubMed Central  Google Scholar 

  14. Selby DE et al (2011) Tachycardia-induced diastolic dysfunction and resting tone in myocardium from patients with a normal ejection fraction. J Am Coll Cardiol 58(2):147–154

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600

    Article  CAS  PubMed  Google Scholar 

  16. Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262

    Article  CAS  PubMed  Google Scholar 

  17. Zhang WX et al (2019) Melatonin protects against sepsis-induced cardiac dysfunction by regulating apoptosis and autophagy via activation of SIRT1 in mice. Life Sci 217:8–15

    Article  CAS  PubMed  Google Scholar 

  18. García N, Zazueta C, Aguilera-Aguirre L (2017) Oxidative Stress and Inflammation in Cardiovascular Disease. Oxid Med Cell Longev 2017:5853238

    Article  PubMed  PubMed Central  Google Scholar 

  19. Coelingh Bennink HJT et al (2017) Pharmacodynamic effects of the fetal estrogen estetrol in postmenopausal women: results from a multiple-rising-dose study. Menopause 24(6):677–685

  20. Simpson ER (2003) Sources of estrogen and their importance. J Steroid Biochem Mol Biol 86(3–5):225–230

    Article  CAS  PubMed  Google Scholar 

  21. Sirianni R et al (2008) The novel estrogen receptor, G protein-coupled receptor 30, mediates the proliferative effects induced by 17beta-estradiol on mouse spermatogonial GC-1 cell line. Endocrinology 149(10):5043–5051

    Article  CAS  PubMed  Google Scholar 

  22. Amirkhosravi L et al (2021) E2-BSA and G1 exert neuroprotective effects and improve behavioral abnormalities following traumatic brain injury: The role of classic and non-classic estrogen receptors. Brain Res 1750:147168

  23. Deschamps AM, Murphy E, Sun J (2010) Estrogen receptor activation and cardioprotection in ischemia reperfusion injury. Trends Cardiovasc Med 20(3):73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bopassa JC et al (2010) A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 298(1):H16-23

    Article  CAS  PubMed  Google Scholar 

  25. Babiker FA et al (2004) 17beta-estradiol antagonizes cardiomyocyte hypertrophy by autocrine/paracrine stimulation of a guanylyl cyclase A receptor-cyclic guanosine monophosphate-dependent protein kinase pathway. Circulation 109(2):269–276

    Article  CAS  PubMed  Google Scholar 

  26. Grohé C et al (1997) Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416(1):107–112

    Article  PubMed  Google Scholar 

  27. Darvishzadeh Mahani F, Khaksari M, Raji-Amirhasani A (2021) Renoprotective effects of estrogen on acute kidney injury: the role of SIRT1. Int Urol Nephrol

  28. Alcaín FJ, Villalba JM (2009) Sirtuin inhibitors. Expert Opin Ther Pat 19(3):283–294

    Article  PubMed  Google Scholar 

  29. Voelter-Mahlknecht S, Mahlknecht U (2006) Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int J Mol Med 17(1):59–67

    CAS  PubMed  Google Scholar 

  30. Lawson M et al (2010) Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochim Biophys Acta 1799(10–12):726–739

    Article  CAS  PubMed  Google Scholar 

  31. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma L, Li Y (2015) SIRT1: role in cardiovascular biology. Clin Chim Acta 440:8–15

    Article  CAS  PubMed  Google Scholar 

  33. Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015

    Article  CAS  PubMed  Google Scholar 

  34. Rodgers JT et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  CAS  PubMed  Google Scholar 

  35. Darband SG et al (2020) Combination of exercise training and L-arginine reverses aging process through suppression of oxidative stress, inflammation, and apoptosis in the rat heart. Pflugers Arch 472(2):169–178

    Article  CAS  PubMed  Google Scholar 

  36. Zhu X et al (2013) Estrogens increase cystathionine-γ-lyase expression and decrease inflammation and oxidative stress in the myocardium of ovariectomized rats. Menopause 20(10):1084–1091

    Article  PubMed  Google Scholar 

  37. Fliegner D et al (2010) Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload. Am J Physiol Regul Integr Comp Physiol 298(6):R1597–R1606

    Article  CAS  PubMed  Google Scholar 

  38. Jordan VC (2015) The new biology of estrogen-induced apoptosis applied to treat and prevent breast cancer. Endocr Relat Cancer 22(1):R1-31

    Article  CAS  PubMed  Google Scholar 

  39. Macciò A, Madeddu C (2011) Obesity, inflammation, and postmenopausal breast cancer: therapeutic implications. Sci World J 11:2020–2036

    Article  Google Scholar 

  40. Störk S et al (2004) Estrogen, inflammation and cardiovascular risk in women: a critical appraisal. Trends Endocrinol Metab 15(2):66–72

    Article  PubMed  Google Scholar 

  41. Pradhan AD et al (2002) Inflammatory biomarkers, hormone replacement therapy, and incident coronary heart disease: prospective analysis from the Women’s Health Initiative observational study. JAMA 288(8):980–987

    Article  CAS  PubMed  Google Scholar 

  42. Danesh J et al (2000) Low grade inflammation and coronary heart disease: prospective study and updated meta-analyses. BMJ 321(7255):199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stice JP et al (2011) 17β-Estradiol, aging, inflammation, and the stress response in the female heart. Endocrinology 152(4):1589–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu Y et al (2006) Estrogen improves cardiac recovery after ischemia/reperfusion by decreasing tumor necrosis factor-alpha. Cardiovasc Res 69(4):836–844

    Article  CAS  PubMed  Google Scholar 

  45. Zhong L et al (2015) Estrogen receptor α mediates the effects of notoginsenoside R1 on endotoxin-induced inflammatory and apoptotic responses in H9c2 cardiomyocytes. Mol Med Rep 12(1):119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang M et al (2006) Estrogen receptor-alpha mediates acute myocardial protection in females. Am J Physiol Heart Circ Physiol 290(6):H2204–H2209

    Article  CAS  PubMed  Google Scholar 

  47. Xing D et al (2007) Estrogen modulates TNF-alpha-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation. Am J Physiol Heart Circ Physiol 292(6):H2607–H2612

    Article  CAS  PubMed  Google Scholar 

  48. Wang M et al (2008) Estrogen receptor beta mediates acute myocardial protection following ischemia. Surgery 144(2):233–238

    Article  PubMed  Google Scholar 

  49. Weil BR et al (2010) Signaling via GPR30 protects the myocardium from ischemia/reperfusion injury. Surgery 148(2):436–443

    Article  PubMed  Google Scholar 

  50. Kiess W, Gallaher B (1998) Hormonal control of programmed cell death/apoptosis. Eur J Endocrinol 138(5):482–491

    Article  CAS  PubMed  Google Scholar 

  51. Altucci L et al (1996) 17beta-Estradiol induces cyclin D1 gene transcription, p36D1-p34cdk4 complex activation and p105Rb phosphorylation during mitogenic stimulation of G(1)-arrested human breast cancer cells. Oncogene 12(11):2315–2324

    CAS  PubMed  Google Scholar 

  52. Satoh M et al (2007) Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation 115(25):3197–3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patten RD et al (2004) 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res 95(7):692–699

    Article  CAS  PubMed  Google Scholar 

  54. Liou CM et al (2010) Effects of 17beta-estradiol on cardiac apoptosis in ovariectomized rats. Cell Biochem Funct 28(6):521–528

    Article  CAS  PubMed  Google Scholar 

  55. Morkuniene R, Arandarcikaite O, Borutaite V (2006) Estradiol prevents release of cytochrome c from mitochondria and inhibits ischemia-induced apoptosis in perfused heart. Exp Gerontol 41(7):704–708

    Article  CAS  PubMed  Google Scholar 

  56. Chen BC et al (2018) Estrogen and/or estrogen receptor α inhibits BNIP3-induced apoptosis and autophagy in H9c2 cardiomyoblast cells. Int J Mol Sci 19(5)

  57. Schubert C et al (2016) Reduction of apoptosis and preservation of mitochondrial integrity under ischemia/reperfusion injury is mediated by estrogen receptor β. Biol Sex Differ 7:53

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li WL, Xiang W, Ping Y (2015) Activation of novel estrogen receptor GPER results in inhibition of cardiocyte apoptosis and cardioprotection. Mol Med Rep 12(2):2425–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arias-Loza PA, Muehlfelder M, Pelzer T (2013) Estrogen and estrogen receptors in cardiovascular oxidative stress. Pflugers Arch 465(5):739–746

    Article  CAS  PubMed  Google Scholar 

  60. Strehlow K et al (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 93(2):170–177

    Article  CAS  PubMed  Google Scholar 

  61. Kim JK et al (2006) Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 281(10):6760–6767

    Article  CAS  PubMed  Google Scholar 

  62. Yao F, Abdel-Rahman AA (2016) Estrogen receptor ERα plays a major role in ethanol-evoked myocardial oxidative stress and dysfunction in conscious female rats. Alcohol 50:27–35

    Article  CAS  PubMed  Google Scholar 

  63. Wang H et al (2018) G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res 199:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mosca L, Barrett-Connor E, Wenger NK (2011) Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation 124(19):2145–2154

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rodgers JL et al (2019) Cardiovascular risks associated with gender and aging. J Cardiovasc Dev Dis 6(2)

  66. Kander MC, Cui Y, Liu Z (2017) Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. J Cell Mol Med 21(5):1024–1032

    Article  PubMed  Google Scholar 

  67. Czubryt MP et al (2006) The role of sex in cardiac function and disease. Can J Physiol Pharmacol 84(1):93–109

    Article  CAS  PubMed  Google Scholar 

  68. Donaldson C et al (2009) Estrogen attenuates left ventricular and cardiomyocyte hypertrophy by an estrogen receptor-dependent pathway that increases calcineurin degradation. Circ Res 104(2):265–75, 11p following 275

  69. de Kat AC et al (2017) Unraveling the associations of age and menopause with cardiovascular risk factors in a large population-based study. BMC Med 15(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  70. Regitz-Zagrosek V et al (2010) Sex and gender differences in myocardial hypertrophy and heart failure. Circ J 74(7):1265–1273

    Article  CAS  PubMed  Google Scholar 

  71. Murphy E (2011) Estrogen signaling and cardiovascular disease. Circ Res 109(6):687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guo X et al (2005) Estrogen induces vascular wall dilation: mediation through kinase signaling to nitric oxide and estrogen receptors alpha and beta. J Biol Chem 280(20):19704–19710

    Article  CAS  PubMed  Google Scholar 

  73. Zhu Y et al (2002) Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta. Science 295(5554):505–508

    Article  CAS  PubMed  Google Scholar 

  74. Adlanmerini M et al (2014) Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc Natl Acad Sci U S A 111(2):E283–E290

    Article  CAS  PubMed  Google Scholar 

  75. Pedram A et al (2008) Estrogen inhibits cardiac hypertrophy: role of estrogen receptor-beta to inhibit calcineurin. Endocrinology 149(7):3361–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sangaralingham SJ, Tse MY, Pang SC (2007) Estrogen protects against the development of salt-induced cardiac hypertrophy in heterozygous proANP gene-disrupted mice. J Endocrinol 194(1):143–152

    Article  CAS  PubMed  Google Scholar 

  77. Tsai CY et al (2017) E2/ER β inhibit ISO-induced cardiac cellular hypertrophy by suppressing Ca2+-calcineurin signaling. PLoS One 12(9):e0184153

  78. Pelzer T et al (2005) The estrogen receptor-alpha agonist 16alpha-LE2 inhibits cardiac hypertrophy and improves hemodynamic function in estrogen-deficient spontaneously hypertensive rats. Cardiovasc Res 67(4):604–612

    Article  CAS  PubMed  Google Scholar 

  79. Babiker FA et al (2006) Estrogen receptor beta protects the murine heart against left ventricular hypertrophy. Arterioscler Thromb Vasc Biol 26(7):1524–1530

    Article  CAS  PubMed  Google Scholar 

  80. Wu CH et al (2005) 17beta-estradiol reduces cardiac hypertrophy mediated through the up-regulation of PI3K/Akt and the suppression of calcineurin/NF-AT3 signaling pathways in rats. Life Sci 78(4):347–356

    Article  CAS  PubMed  Google Scholar 

  81. Westphal C et al (2012) Effects of estrogen, an ERα agonist and raloxifene on pressure overload induced cardiac hypertrophy. PLoS One 7(12):e50802

  82. Jazbutyte V et al (2008) Ligand-dependent activation of ER{beta} lowers blood pressure and attenuates cardiac hypertrophy in ovariectomized spontaneously hypertensive rats. Cardiovasc Res 77(4):774–781

    Article  CAS  PubMed  Google Scholar 

  83. Di Mattia RA et al (2020) The activation of the G protein-coupled estrogen receptor (GPER) prevents and regresses cardiac hypertrophy. Life Sci 242:117211

  84. Wang H et al (2015) Activation of GPR30 inhibits cardiac fibroblast proliferation. Mol Cell Biochem 405(1–2):135–148

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Pei H et al (2019) G protein-coupled estrogen receptor 1 inhibits Angiotensin II-induced Cardiomyocyte Hypertrophy via the regulation of PI3K-Akt-mTOR signalling and autophagy. Int J Biol Sci 15(1):81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Verdin E et al (2010) Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci 35(12):669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Alcendor RR et al (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100(10):1512–1521

    Article  CAS  PubMed  Google Scholar 

  88. Palomer X et al (2013) An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol 168(4):3160–3172

    Article  PubMed  Google Scholar 

  89. Chang HC, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145

    Article  CAS  PubMed  Google Scholar 

  90. Tanno M et al (2010) Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem 285(11):8375–8382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vinciguerra M et al (2009) Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stresses via SirT1 activity. Aging (Albany NY) 2(1):43–62

    Article  Google Scholar 

  92. Hsu CP et al (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122(21):2170–2182

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chen CJ et al (2009) Resveratrol protects cardiomyocytes from hypoxia-induced apoptosis through the SIRT1-FoxO1 pathway. Biochem Biophys Res Commun 378(3):389–393

    Article  CAS  PubMed  Google Scholar 

  94. Zhang QJ et al (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80(2):191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Csiszar A et al (2009) Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev 130(8):518–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Vinciguerra M et al (2012) mIGF-1/JNK1/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 11(1):139–149

    Article  CAS  PubMed  Google Scholar 

  97. Furukawa A et al (2007) H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion. Cell Physiol Biochem 20(1–4):45–54

    Article  CAS  PubMed  Google Scholar 

  98. Arunachalam G et al (2010) SIRT1 regulates oxidant- and cigarette smoke-induced eNOS acetylation in endothelial cells: Role of resveratrol. Biochem Biophys Res Commun 393(1):66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yao H, Rahman I (2012) Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem Pharmacol 84(10):1332–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Planavila A et al (2011) Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc Res 90(2):276–284

    Article  CAS  PubMed  Google Scholar 

  101. Gillum MP et al (2011) SirT1 regulates adipose tissue inflammation. Diabetes 60(12):3235–3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang B et al (2018) Dioscin protects against coronary heart disease by reducing oxidative stress and inflammation via Sirt1/Nrf2 and p38 MAPK pathways. Mol Med Rep 18(1):973–980

    CAS  PubMed  Google Scholar 

  103. Xie J et al (2020) Kallistatin alleviates heart failure in rats by inhibiting myocardial inflammation and apoptosis via regulating sirt1. Eur Rev Med Pharmacol Sci 24(11):6390–6399

    CAS  PubMed  Google Scholar 

  104. Cohen HY et al (2004) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13(5):627–638

    Article  CAS  PubMed  Google Scholar 

  105. Smith J (2002) Human Sir2 and the “silencing” of p53 activity. Trends Cell Biol 12(9):404–406

    Article  CAS  PubMed  Google Scholar 

  106. Cheng HL et al (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 100(19):10794–10799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Alcendor RR et al (2004) Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 95(10):971–980

    Article  CAS  PubMed  Google Scholar 

  108. Pillai JB et al (2005) Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280(52):43121–43130

    Article  CAS  PubMed  Google Scholar 

  109. Hsu CP et al (2008) Sirt1 protects the heart from aging and stress. Biol Chem 389(3):221–231

    Article  CAS  PubMed  Google Scholar 

  110. Han X et al (2020) Resveratrol protects H9c2 cells against hypoxia-induced apoptosis through miR-30d-5p/SIRT1/NF-κB axis. J Biosci 45

  111. Chong ZZ, Li F, Maiese K (2005) Stress in the brain: novel cellular mechanisms of injury linked to Alzheimer’s disease. Brain Res Brain Res Rev 49(1):1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fontana L, Vinciguerra M, Longo VD (2012) Growth factors, nutrient signaling, and cardiovascular aging. Circ Res 110(8):1139–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bolasco G et al (2012) Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice. Aging (Albany NY) 4(6):402–416

    Article  CAS  Google Scholar 

  114. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  Google Scholar 

  115. Gracia-Sancho J et al (2010) Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc Res 85(3):514–519

    Article  CAS  PubMed  Google Scholar 

  116. Salminen A, Kaarniranta K, Kauppinen A (2013) Crosstalk between oxidative stress and SIRT1: impact on the aging process. Int J Mol Sci 14(2):3834–3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiong S et al (2011) FoxO1 mediates an autofeedback loop regulating SIRT1 expression. J Biol Chem 286(7):5289–5299

    Article  CAS  PubMed  Google Scholar 

  118. Yamamoto T, Sadoshima J (2011) Protection of the heart against ischemia/reperfusion by silent information regulator 1. Trends Cardiovasc Med 21(1):27–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rajendran R et al (2011) Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011:368276

  120. Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl) 89(7):667–676

    Article  CAS  Google Scholar 

  121. Xie QW, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269(7):4705–4708

    Article  CAS  PubMed  Google Scholar 

  122. Mattagajasingh I et al (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104(37):14855–14860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Potente M et al (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21(20):2644–2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sakamoto J et al (2004) Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett 556(1–3):281–286

    Article  CAS  PubMed  Google Scholar 

  125. Tanno M et al (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282(9):6823–6832

    Article  CAS  PubMed  Google Scholar 

  126. Sundaresan NR et al (2011) The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal 4(182):ra46

  127. Sedding D, Haendeler J (2007) Do we age on Sirt1 expression? Circ Res 100(10):1396–1398

    Article  CAS  PubMed  Google Scholar 

  128. Geng B et al (2013) PARP-2 knockdown protects cardiomyocytes from hypertrophy via activation of SIRT1. Biochem Biophys Res Commun 430(3):944–950

    Article  CAS  PubMed  Google Scholar 

  129. Wojciechowski P et al (2010) Resveratrol arrests and regresses the development of pressure overload- but not volume overload-induced cardiac hypertrophy in rats. J Nutr 140(5):962–968

    Article  CAS  PubMed  Google Scholar 

  130. Li S et al (2019) Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1. Biochim Biophys Acta Mol Basis Dis 1865(6):1241–1252

    Article  CAS  PubMed  Google Scholar 

  131. Dong HW, Zhang LF, Bao SL (2018) AMPK regulates energy metabolism through the SIRT1 signaling pathway to improve myocardial hypertrophy. Eur Rev Med Pharmacol Sci 22(9):2757–2766

    PubMed  Google Scholar 

  132. Hou J et al (2010) Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation. Curr Neurovasc Res 7(2):95–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hou J et al (2011) Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res 8(3):220–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Margueron R et al (2004) Histone deacetylase inhibition and estrogen signalling in human breast cancer cells. Biochem Pharmacol 68(6):1239–1246

    Article  CAS  PubMed  Google Scholar 

  135. Reid G et al (2005) Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene 24(31):4894–4907

    Article  CAS  PubMed  Google Scholar 

  136. Yao Y et al (2010) Inhibition of SIRT1 deacetylase suppresses estrogen receptor signaling. Carcinogenesis 31(3):382–387

    Article  CAS  PubMed  Google Scholar 

  137. Liarte S, Alonso-Romero JL, Nicolás FJ (2018) SIRT1 and estrogen signaling cooperation for breast cancer onset and progression. Front Endocrinol (Lausanne) 9:552

    Article  Google Scholar 

  138. Bendale DS et al (2013) 17-β Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br J Pharmacol 170(4):779–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dyck JR, Lopaschuk GD (2006) AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol 574(Pt 1):95–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Donato AJ et al (2011) SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J Physiol 589(Pt 18):4545–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Meng Z et al (2016) Resveratrol attenuated estrogen-deficient-induced cardiac dysfunction: role of AMPK, SIRT1, and mitochondrial function. Am J Transl Res 8(6):2641–2649

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Guo JM et al (2017) SIRT1-dependent AMPK pathway in the protection of estrogen against ischemic brain injury. CNS Neurosci Ther 23(4):360–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Elbaz A, Rivas D, Duque G (2009) Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice. Biogerontology 10(6):747–755

    Article  CAS  PubMed  Google Scholar 

  144. Rasbach KA, Schnellmann RG (2008) Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther 325(2):536–543

    Article  CAS  PubMed  Google Scholar 

  145. Elangovan S et al (2011) SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor α in breast cancer. Cancer Res 71(21):6654–6664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tao Z (2019) Estrogen signaling interacts with Sirt1 in adipocyte autophagy Virginia Tech

  147. Santolla MF et al (2015) SIRT1 is involved in oncogenic signaling mediated by GPER in breast cancer. Cell Death Dis 6(7):e1834–e1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

ZH and MK reviewed the literature and wrote the paper. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohammad Khaksari.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajializadeh, Z., Khaksari, M. The protective effects of 17-β estradiol and SIRT1 against cardiac hypertrophy: a review. Heart Fail Rev 27, 725–738 (2022). https://doi.org/10.1007/s10741-021-10171-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10171-0

Keywords

Navigation