Skip to main content
Log in

Drivers of taxonomic, functional and phylogenetic diversities in dominant ground-dwelling arthropods of coastal heathlands

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Although functional and phylogenetic diversities are increasingly used in ecology for a variety of purposes, their relationship remains unclear, and this relationship likely differs among taxa, yet most recent studies focused on plants. We hypothesize that communities may be diverse in functional traits due to presence of: many phylogenetic lineages, trait divergence within lineages, many species and random functional variation among species, weak filtering of traits in favorable environments, or strong trait divergence in unfavorable environments. We tested these predictions for taxa showing higher (ants), or lower (spiders, ground beetles) degrees of competition and niche construction, both of which might decouple functional traits from phylogenetic position or from the environment. Studying > 11,000 individuals and 216 species from coastal heathlands, we estimated functional as minimum spanning trees using traits related to the morphology, feeding habits and dispersal, respectively. Relationships between functional and phylogenetic diversities were overall positive and strong. In ants, this relationship disappeared after accounting for taxonomic diversities and environments, whereas in beetles and spiders taxonomic diversity is related to functional diversity only via increasing phylogenetic diversity. Environmental constraints reduced functional diversity in ants, but affected functional diversity only indirectly via phylogenetic diversity (ground beetles) and taxonomic and then phylogenetic diversity (spiders and ground beetles). Results are consistent with phylogenetic conservatism in traits in spiders and ground beetles. In ants, in contrast, traits appear more phylogenetically neutral with any new species potentially representing a new trait state, tentatively suggesting that competition or niche construction might decouple phylogenetics from trait diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material (data transparency)

https://doi.org/10.5281/zenodo.5172695.

Code availability (software application or custom code)

Not applicable.

References

  • Agnarsson I (2004) Morphological phylogeny of cobweb spiders and their relatives (Araneae, Araneoidea, Theridiidae). Zool J Linn Soc 141:447–626. https://doi.org/10.1111/j.1096-3642.2004.00120.x

    Article  Google Scholar 

  • Arnan X, Cerdá X, Retana J (2015) Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants. PeerJ 3:e1241. https://doi.org/10.7717/peerj.1241

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnedo MA, Hormiga G, Scharff N (2009) Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence. Cladistics 25(3):231–262. https://doi.org/10.1111/j.1096-0031.2009.00249.x

    Article  PubMed  Google Scholar 

  • Azevedo GHF, Griswold CE, Santos AJ (2018) Systematics and evolution of ground spiders revisited (Araneae, Dionycha, Gnaphosidae). Cladistics 34:579–626. https://doi.org/10.1111/cla.12226

    Article  PubMed  Google Scholar 

  • Baulechner D, Jauker F, Neubauer TA, Wolters V (2020) Convergent evolution of specialized generalists: implications for phylogenetic and functional diversity of carabid feeding groups. Ecol Evol 10:11100–11110

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernard-Verdier M, Flores O, Navas ML, Garnier E (2013) Partitioning phylogenetic and functional diversity into alpha and beta components along an environmental gradient in a Mediterranean rangeland. J Veg Sci 24:877–889

    Article  Google Scholar 

  • Blatrix R, Galkowski C, Lebas C, Wegnez P (2013) Guide des fourmis de France, Delachaux et Niestlé, pp 287.

  • Bond JE, Garrison NL, Hamilton CA, Godwin RL, Hedin M, Agnarsson I (2014) Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution. Curr Biol 24:1765–1771

    Article  CAS  PubMed  Google Scholar 

  • Bürkner P-C (2018) Advanced bayesian multilevel modeling with the R package brms. R J 10:395–411. https://doi.org/10.32614/RJ-2018-017

    Article  Google Scholar 

  • Cadotte MW, Carboni M, Si X, Tatsumi S (2019) Do traits and phylogeny support congruent community diversity patterns and assembly inferences? J Ecol 107:2065–2077

    Article  Google Scholar 

  • Campbell WB, Freeman DC, Emlen JM, Ortiz SL (2010) Correlations between plant phylogenetic and functional diversity in a high altitude cold salt desert depend on sheep grazing season: Implications for range recovery. Ecol Indic 10:676–686

    Article  Google Scholar 

  • Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6:e21710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso P, Rigal F, Carvalho JC (2015) BAT–Biodiversity assessment tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol Evol 6:232–236

    Article  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PV, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715

    Article  PubMed  Google Scholar 

  • Cerda X, Arnan X, Retana J (2013) Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology. Myrmecol News 18:131–147

    Google Scholar 

  • Coelho MS, Quintino AV, Fernandes GW, Santos JC, Delabie JHC (2009) Ants (Hymenoptera: Formicidae) as bioindicators of land restoration in a Brazilian Atlantic forest fragment. Sociobiology 54:51

    Google Scholar 

  • Corbelli JM, Zurita GA, Filloy J, Galvis JP, Vespa NI, Bellocq I (2015) Integrating taxonomic, functional and phylogenetic beta diversities: Interactive effects with the biome and land use across taxa. PLoS ONE 10:e0126854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Desender K, Maelfait J-P (1999) Diversity and conservation of terrestrial arthropods in tidal marshes along the River Schelde: a gradient analysis. Biol Conserv 87:221-229

    Article  Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506

    Article  Google Scholar 

  • Dunn EL, Shropshire FM, Song LC, Mooney HA (1976) The water factor and convergent evolution in Mediterranean-type vegetation. Water and plant life. Springer, Berlin, Heidelberg, pp 492–505

    Chapter  Google Scholar 

  • Ellenberg H, Weber HE, Düll R et al (1992) Zeigerwerte von Pflanzen in Mitteleuropa, 2nd ed. Scr Geobot 18:1–258

    Google Scholar 

  • Entling W, Schmidt MH, Bacher S, Brandl R, Nentwig W (2007) Niche properties of Central European spiders: shading, moisture and the evolution of the habitat niche. Glob Ecol Biogeogr 16:440–448

    Article  Google Scholar 

  • Eterovick PC, Rievers CR, Kopp K, Wachlevski M, Franco BP, Dias CJ, Barata IM, Ferreira ADM, Afonso LG (2010) Lack of phylogenetic signal in the variation in anuran microhabitat use in southeastern Brazil. Evol Ecol. https://doi.org/10.1007/s10682-008-9286-9

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Fichaux M, Béchade B, Donald J, Weyna A, Delabie JHC, Murienne J, Baraloto C, Orivel J (2019) Habitats shape taxonomic and functional composition of Neotropical ant assemblages. Oecologia 189:501–513

    Article  PubMed  Google Scholar 

  • Finch OD, Krummen H, Plaisier F, Schultz W (2007) Zonation of spiders (Araneae) and carabid beetles (Coleoptera: Carabidae) in island salt marshes at the North Sea coast. Wetl Ecol Manag 15:207–228

    Article  Google Scholar 

  • Flynn DF, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–1581

    Article  PubMed  Google Scholar 

  • Frick H, Nentwig W, Kropf C (2010) Progress in erigonine spider phylogeny—the Savignia-group is not monophyletic (Araneae : Linyphiidae). Org Divers Evol 10:297–310. https://doi.org/10.1007/s13127-010-0023-1

    Article  Google Scholar 

  • Georges A, Fouillet P, Pétillon J (2011) Changes in salt-marsh carabid assemblages after an invasion by the native grass Elymus athericus (Link) Kerguélen. ZooKeys 100:407–419

    Article  Google Scholar 

  • Gerhold P, Cahill JF Jr, Winter M, Bartish IV, Prinzing A (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29:600–614

    Article  Google Scholar 

  • Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850. https://doi.org/10.1007/s10841-013-9565-9

    Article  Google Scholar 

  • Götting E (2001) Development of salt marsh arthropod fauna after opening a summer polder. Senckenberg Marit 31:333–340

    Article  Google Scholar 

  • Grundler MR, Pianka ER, Pelegrin N, Cowan MA, Rabosky DL (2018) Stable isotope ecology of a hyper-diverse community of scincid lizards from arid Australia. PLoS ONE 12:e0172879

    Article  CAS  Google Scholar 

  • Haak DC, Ballenger BA, Moyle LC (2014) No evidence for phylogenetic constraint on natural defense evolution among wild tomatoes. Ecology 95:1633–1641

    Article  PubMed  Google Scholar 

  • Hacala A, Le Roy M, Sawtschuk J, Pétillon J (2020) Comparative responses of spiders and plants to maritime heathland restoration. Biodivers Conserv 29:229–249

    Article  Google Scholar 

  • Harvey PR, Nellist DR, Telfer MG (2002) Provisional Atlas of British spiders (Arachnida, Araneae), volumes 1 & 2, Biological Records Centre, Huntingdon, pp 406

  • Hill MO, Mountford JO, Roy DB, Bunce RGH (1999) Ellenberg’s indicator values for British plants. Centre for Ecology and Hydrology, Huntingdon, Cambs, UK

    Google Scholar 

  • Hill MO, Preston CD, Roy DB (2004) PLANTATT-attributes of British and Irish plants: status, size, life history, geography and habitats. Centre for Ecology and Hydrology, Huntingdon

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, New Jersey, USA

    Google Scholar 

  • Jeannel R (1941) Faune de France: Coléoptères carabiques. Fédération Française des sociétés de science naturelles, Office central de faunistique, pp 1173.

  • Khalil MI, Gibson DJ, Baer SG, Willand JE (2018) Functional diversity is more sensitive to biotic filters than phylogenetic diversity during community assembly. Ecosphere 9:e02164. https://doi.org/10.1002/ecs2.2164

    Article  Google Scholar 

  • Kruschke JK, Liddell TM (2018) The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon Bull Rev 25:178–206

    Article  PubMed  Google Scholar 

  • Lafage D, Maugenest S, Bouzillé J-B, Pétillon J (2015) Disentangling the influence of local and landscape factors on alpha and beta diversities: opposite response of plants and ground-dwelling arthropods in wet meadows. Ecol Res 30:1025–1035

    Article  Google Scholar 

  • Lafage D, Djoudi EA, Perrin G, Gallet S, Pétillon J (2019) Responses of ground-dwelling spider assemblages to changes in vegetation from wet oligotrophic habitats of Western France. Arthropod Plant Interact 13:653–662

    Article  Google Scholar 

  • Laliberté E, Legendre P, Shipley B, Laliberté ME (2014) Package ‘FD’. Measuring functional diversity from multiple traits, and other tools for functional ecology. [Computer software]

  • Lefcheck JS (2016) piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579

    Article  Google Scholar 

  • Leroy B, Le Viol I, Pétillon J (2014) Complementarity of rarity, specialisation and functional diversity metrics to assess community responses to environmental changes, using an example of spider communities in salt marshes. Ecol Indic 46:351–357

    Article  Google Scholar 

  • Liu C, Guénard B, Blanchard B, Peng YQ, Economo EP (2016) Reorganization of taxonomic, functional, and phylogenetic ant biodiversity after conversion to rubber plantation. Ecol Monogr 86:215–227. https://doi.org/10.1890/15-1464.1

    Article  Google Scholar 

  • López-López A, Vogler AP (2017) The mitogenome phylogeny of Adephaga (Coleoptera). Mol Phylogenet Evol 114:166–174. https://doi.org/10.1016/j.ympev.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu Rev Entomol 41:231–256

    Article  PubMed  Google Scholar 

  • Lowe E, Wolff JO, Aceves-Aparicio A, Birkhofer K, Branco VV, Cardoso P, Chichorro P, Fukushima CS, Gonçalves-Souza T, Haddad CR, Isaia M, Krehenwinkel H, Lynn Audisio T, Macías-Hernández N, Malumbres-Olarte J, Mammola S, McLean DJ, Michalko R, Nentwig W, Pekár S, Pétillon J, Privet K, Scott C, Uhl G, Urbano-Tenorio F, Wong BH, Herberstein ME (2020) Towards establishment of a centralized spider traits database. J Arachnol 48:103–109

    Article  Google Scholar 

  • Luff ML (2007) The Carabidae (ground beetles) of Britain and Ireland. RES handbooks for the identification of British Insects, vol 4 Part 2. Field Studies Council, Shrewsbury, pp 252.

  • Maddison WP (2015) A phylogenetic classification of jumping spiders (Araneae : Salticidae). J Arachnol 43:231. https://doi.org/10.1636/arac-43-03-231-292

    Article  Google Scholar 

  • Magura T (2016) Ignoring functional and phylogenetic features masks the edge influence on ground beetle diversity across forest-grassland gradient. For Ecol Manage 384:371–377. https://doi.org/10.1016/j.foreco.2016.10.056

    Article  Google Scholar 

  • Magura T, Lövei GL (2019) Environmental filtering is the main assembly rule of ground beetles in the forest and its edge but not in the adjacent grassland. Insect Sci 26:154–163

    Article  PubMed  Google Scholar 

  • Magura T, Lövei GL, Tóthmérész B (2010) Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob Ecol and Biogeogr 19:16–26

    Article  Google Scholar 

  • Makowski D, Ben-Shachar MS, Lüdecke D (2019) bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J Open Source Softw 4:1541

    Article  Google Scholar 

  • Martínez-Navarro EM, Galián J, Serrano J (2005) Phylogeny and molecular evolution of the tribe Harpalini (Coleoptera, Carabidae) inferred from mitochondrial cytochrome-oxidase I. Mol Phylogen Evol 35:127–146. https://doi.org/10.1016/j.ympev.2004.11.009

    Article  CAS  Google Scholar 

  • Millidge AF (1978) The genera Mecopisthes Simon and Hypsocephalus n.gen. and their phylogenetic relationships Araneae: Linyphiidae. Bull Br Arachnol Soc 4:113–123

    Google Scholar 

  • Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE (2006) Phylogeny of the ants : diversification in the age of Angiosperms. Science 312:101–104. https://doi.org/10.1126/science.1124891

    Article  CAS  PubMed  Google Scholar 

  • Nentwig W, Blick T, Gloor D, Hänggi A, Kropf C (2019) Version 06.2019. Available at https://www.araneae.nmbe.ch. Accessed 19 June 2019. https://doi.org/10.24436/1

  • Niemelä J (1993) Interspecific competition in ground-beetle assemblages (Carabidae): what have we learned? Oikos 66:325–335

    Article  Google Scholar 

  • Niemelä J, Kotze DJ (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landsc Urban Plan 92:65–71

    Article  Google Scholar 

  • Novack-Gottshall PM (2016) General models of ecological diversification. I Concep Synth Paleobiol 42:185–208

    Article  Google Scholar 

  • Ober KA, Maddison DR (2008) Phylogenetic relationships of tribes within Harpalinae (Coleoptera : Carabidae) as inferred from 28S ribosomal DNA and the wingless gene. J Insect Sci 8:1–32. https://doi.org/10.1673/031.008.6301

    Article  Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2013) Niche construction: the neglected process in evolution (MPB-37). Princeton University Press, Princeton, p 488

    Book  Google Scholar 

  • Paradis E, Blomberg S, Bolker B, Brown J, Claude J, Cuong HS, Desper R (2019) Package ‘ape’. Analyses of phylogenetics and evolution version 2. [Computer software]

  • Parr CL, Dunn RR, Sanders NJ, Weiser MD, Photakis M, Bishop TR, Fitzpatrick MC, Arnan X, Baccaro F, Brand Ao CRF, Chick L, Donoso DA, Fayle TM, Gomez C, Munyai BTC, Pacheco R, Retana J, Robinson A, Sagata K, Silva RR, Tista M, Vasconcelos H, Yates M, Gibb H (2017) GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv Divers 10:5–20

    Article  Google Scholar 

  • Pavoine S, Baguette M, Bonsall MB (2010) Decomposition of trait diversity among the nodes of a phylogenetic tree. Ecol Monogr 80:485–507

    Article  Google Scholar 

  • Pavoine S, Gasc A, Bonsall MB, Mason NW (2013) Correlations between phylogenetic and functional diversity: mathematical artefacts or true ecological and evolutionary processes? J Veg Sci 24:781–793

    Article  Google Scholar 

  • Pedley SM, Dolman PM (2014) Multi-taxa trait and functional responses to physical disturbance. J Anim Ecol 83:1542–1552. https://doi.org/10.1111/1365-2656.12249

    Article  PubMed  Google Scholar 

  • Pétillon J, Ysnel F, Canard A, Lefeuvre J-C (2005) Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: responses of spider populations. Biol Conserv 126:103–117

    Article  Google Scholar 

  • Pétillon J, Georges A, Canard A, Ysnel F (2007) Impact of cutting and sheep grazing on ground–active spiders and carabids in intertidal salt marshes (Western France). Anim Biodivers Conserv 30:201–209

    Google Scholar 

  • Pétillon J, Georges A, Canard A, Lefeuvre J-C, Bakker JP, Ysnel F (2008) Influence of abiotic factors on spider and ground beetles communities in different salt-marsh systems. Basic Appl Ecol 9:743–751

    Article  Google Scholar 

  • Pétillon J, Potier S, Carpentier A, Garbutt A (2014) Evaluating the success of managed realignment for the restoration of salt marshes: lessons from invertebrate communities. Ecol Eng 69:70–75

    Article  Google Scholar 

  • Piacentini LN, Ramírez MJ (2019) Hunting the wolf: a molecular phylogeny of the wolf spiders (Araneae, Lycosidae). Mol Phylogenet Evol 136:227–240

    Article  PubMed  Google Scholar 

  • Pinheiro-Silva L, Gianuca AT, Silveira MH, Petrucio MM (2020) Grazing efficiency asymmetry drives zooplankton top-down control on phytoplankton in a subtropical lake dominated by non-toxic cyanobacteria. Hydrobiologia 847:2307–3220

    Article  Google Scholar 

  • Prinzing A (2016) On the opportunity of using phylogenetic information to ask evolutionary questions in functional community ecology. Fol Geobot 51:69–74

    Article  Google Scholar 

  • Prinzing A, Reiffers R, Braakhekke WG, Hennekens SM, Tackenberg O, Ozinga WA, Schaminée JHJ, Van Groenendael JM (2008) Less lineages–more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol Lett 11:809–819

    Article  PubMed  Google Scholar 

  • Purves DW, Turnbull LA (2010) Different but equal: the implausible assumption at the heart of neutral theory. J Anim Ecol 79:1215–1225

    Article  PubMed  PubMed Central  Google Scholar 

  • Ridel A, Lafage D, Devogel P, Lacoue-Labarthe T, Pétillon J (2021) Habitat filtering differentially modulates phylogenetic vs functional diversity relationships between dominant ground-dwelling arthropods in salt marshes. R Soc Open Sci 8:202093. https://doi.org/10.1098/rsos.202093

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts MJ (1985) The spiders of Great Britain and Ireland. J New York Entomol Soc 93:1279–1280

  • Rodrigues ASL, Brooks TM, Gaston KJ (2005) Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference. Phylogeny Conserv 8:101–119

    Google Scholar 

  • Ruiz C, Jordal B, Serrano J (2009) Molecular phylogeny of the tribe Sphodrini (Coleoptera: Carabidae) based on mitochondrial and nuclear markers. Mol Phylogenet Evol 50(1):44–58. https://doi.org/10.1016/j.ympev.2008.09.023

    Article  CAS  PubMed  Google Scholar 

  • Safi K, Cianciaruso MV, Loyola RD, Brito D, Armour-Marshall K, Diniz-Filho JAF (2011) Understanding global patterns of mammalian functional and phylogenetic diversity. Philos Trans R Soc Lond B Biol Sci 366:2536–2544

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasakawa K, Kubota K (2007) Phylogeny and genital evolution of Carabid beetles in the genus Pterostichus and its allied genera (Coleoptera: Carabidae) inferred from two nuclear gene sequences. Ann Entomol Soc Am 100(2):100–109. https://doi.org/10.1603/0013-8746(2007)100[100:PAGEOC]2.0.CO;2

    Article  CAS  Google Scholar 

  • Sawtschuk J (2010) Restauration écologique des pelouses et des landes des falaises littorales atlantiques: Analyse des trajectoires successionnelles en environnement contraint. PhD dissertation, Institut de Géoarchitecture, Université de Bretagne Occidentale, Brest, France.

  • Scharff N, Coddington JA, Blackledge TA, Agnarsson I, Framenau VW, Szűts T, Hayashi CY, Dimitrov D (2019) Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea). Cladistics 36:1–21. https://doi.org/10.1111/cla.12382

    Article  PubMed  Google Scholar 

  • Schirmel J, Blindow I, Buchholz S (2012) Life-history trait and functional diversity patterns of ground beetles and spiders along a coastal heathland successional gradient. Basic Appl Ecol 13:606–614. https://doi.org/10.1016/j.baae.2012.08.015

    Article  Google Scholar 

  • Schirmel J, Thiele J, Entling MH, Buchholz S (2016) Trait composition and functional diversity of spiders and carabids in linear landscape elements. Agric Ecosyst Environ 235:318–328. https://doi.org/10.1016/j.agee.2016.10.028

    Article  Google Scholar 

  • Schmidt FA, Schoereder JH, Caetano MDN (2017) Ant assemblage and morphological traits differ in response to soil compaction. Insectes Soc 64:219–225

    Article  Google Scholar 

  • Stevens RD, Grimshaw JR (2020) Relative contributions of ecological drift and selection on bat community structure in interior Atlantic Forest of Paraguay. Oecologia 193:645–654

    Article  PubMed  Google Scholar 

  • Topping CJ, Sunderland KD (1992) Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter wheat. J Appl Ecol 29:485–491

    Article  Google Scholar 

  • Torma A, Császár P, Bozsó M, Deák B, Valkó O, Kiss O, Gallé R (2019) Species and functional diversity of arthropod assemblages (Araneae, Carabidae, Heteroptera and Orthoptera) in grazed and mown salt grasslands. Agric Ecosyst Environ 273:70–79

    Article  Google Scholar 

  • Torossian C (1977) Les fourmis rousses des bois (Formica rufa) indicateurs biologiques de dégradation des forêts de montagne des Pyrénées orientales. Bull D’écol 8:333–348

    Google Scholar 

  • Traut BH (2005) The role of coastal ecotones: a case study of the salt marsh/upland transition zone in California. J Ecol 93:279–290. https://doi.org/10.1111/j.1365-2745.2005.00969.x

    Article  Google Scholar 

  • Tucker CM, Davies TJ, Cadotte MW, Pearse WD (2018) On the relationship between phylogenetic diversity and trait diversity. Ecology 99:1473–1479

    Article  PubMed  Google Scholar 

  • Varet M, Burel F, Lafage D, Pétillon J (2013) Age-dependent colonization of urban habitats: a diachronic approach using carabid beetles and spiders. Anim Biol 63:257–269

    Article  Google Scholar 

  • Verschoor BC, Krebs BPM (1995) Diversity changes in a plant and carabid community during early succession in an embanked saltmarsh area. Pedobiologia 39:405–416

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Wang F, Ballesteros JA, Hormiga G, Chesters D, Zhan Y, Sun N, Zhu C, Chen W, Tu L (2015) Resolving the phylogeny of a speciose spider group, the family Linyphiidae (Araneae). Mol Phylogenet Evol 91:135–149. https://doi.org/10.1016/j.ympev.2015.05.005

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Wenninger EJ, Fagan WF (2000) Effect of river flow manipulation on wolf spider assemblages at three desert riparian sites. J Arachnol 28:115–122

    Article  Google Scholar 

  • Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Almeida-Silva L, Alvarez-Padilla F, Arnedo MA, Benavides Silva LR, Benjamin SP, Bond JE, Grismado CJ, Hasan E, Hedin M, Izquierdo MA, Labarque FM, Ledford J, Lopardo L, Maddison WP, Miller JA, Piacentini LN, Platnik NI, Polotow D, Silva-Dávila D, Scharff N, Szűts T, Ubick D, Vink CJ, Wood HM, Zhang J (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33:574–616. https://doi.org/10.1111/cla.12182

    Article  PubMed  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davis JT, Grytnes J-A, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Wise DH (2006) Cannibalism, food limitation, intraspecific competition and the regulation of spider populations. Annu Rev Entomol 51:441–465

    Article  CAS  PubMed  Google Scholar 

  • Wong MK, Guénard B, Lewis OT (2019) Trait-based ecology of terrestrial arthropods. Biol Rev 94:999–1022

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Clément Gouraud for his expertise regarding ants, Aurélien Ridel, Pierre Devogel and Timothée Scherer for their help in identifying spiders and carabids, and sorting samples respectively, and “Bretagne Vivante” and “Communauté de communes de Belle-île-en-Mer” for continuous support during fieldwork. We also want to thank the three anonymous reviewers for their thorough corrections and hindsights.

Funding

This study was funded by the Fondation de France (Grant number no. 1531).

Author information

Authors and Affiliations

Authors

Contributions

JP and JS conceived and designed the experiments. AH conducted the fieldwork. AH and DL analyzed the data. AH, DL, JP AP and JS wrote the manuscript.

Corresponding author

Correspondence to Axel Hacala.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate (include appropriate statements)

All authors.

Consent for publication (include appropriate statements)

All authors.

Additional information

Communicated by Roland A. Brandl.

Supplementary Information

Below is the link to the electronic supplementary material.

442_2021_5032_MOESM1_ESM.pdf

Online Resource 1: Landscape context of the three sites. a) L’Apothicairerie; b) La Pointe de l’Enfer; c) Penn Hir. The area in white represent the study sites. The dashed line represent the delimitation between different habitats named on the maps1 (PDF 6866 kb)

Online Resource 2: Functional diversity simulation (PDF 222 kb)

442_2021_5032_MOESM3_ESM.pdf

Online Resource3: a) phylogenetic tree of spider species sampled in this study. The colors marks depend on each specie’s salt tolerance (Green= Halophilic; blue= tolerant; red= intolerant; no mark= NA). b) Phylogenetic tree of spider species sampled in this study. The colors marks depend on each specie’s humidity tolerance (Green= Halophilic; blue= tolerant; red= intolerant; no mark= NA). The ecological information come from Nentwig et al. (2019) and Harvey et al. (2002). c) Phylogenetic tree of ground beetles species sampled in this study. The color marks depend on each species salt tolerance (Green= Halophilic; blue = at least tolerant to salt; red= intolerant; no mark= NA).The salt tolerance information come from Götting (2001), Finch et al. (2007), Pétillon et al. (2007), Georges et al. (2011) and Torma et al. (2019). d) Phylogenetic tree of ants species in this study (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacala, A., Lafage, D., Prinzing, A. et al. Drivers of taxonomic, functional and phylogenetic diversities in dominant ground-dwelling arthropods of coastal heathlands. Oecologia 197, 511–522 (2021). https://doi.org/10.1007/s00442-021-05032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-021-05032-4

Keywords

Navigation