Skip to main content
Log in

A long noncoding RNA–microRNA expression signature predicts metastatic signature in pheochromocytomas and paragangliomas

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

In hopes of discovering new markers for metastatic or aggressive phenotypes of pheochromocytomas and paragangliomas (PCPG), we analyzed the noncoding transcriptome from patient gene expression data in The Cancer Genome Atlas.

Methods

Differential expression of miRNAs was observed between PCPG molecular subtypes. We specifically characterized candidate miRNAs that are upregulated in pseudohypoxic PCPGs with mutations in succinate dehydrogenase complex subunits, B and/or D (SDHB and/or SDHD, respectively), which are mutations associated with unfavorable clinical outcomes.

Results

Our computational analysis identified four candidate miRNAs that showed elevated expression in metastatic compared to non-metastatic PCPGs: miR-182, miR-183, miR-96, and miR-383. We also found six candidate lncRNAs harboring opposite expression patterns from the miRNAs when we analyzed the expression profiles of their predicted target lncRNAs. Three of these lncRNA candidates, USP3-AS1, LINC00877, and AC009312.1, were validated to have reduced expression in metastatic compared to non-metastatic PCPGs. Finally, using univariate and multivariate analysis, we found miRNA miR-182 to be an independent predictor of metastasis-free survival in PCPGs.

Conclusions

We identified candidate miRNA and lncRNAs associated with metastasis-free survival in PCPGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data used in this paper are available from The Cancer Genome Atlas at the Genomic Data Commons portal: https://gdc.cancer.gov.

Code availability

The R scripts used for this paper are available from https://github.com/suman-ghosal.

References

  1. T. Zelinka, G. Eisenhofer, K. Pacak, Pheochromocytoma as a catecholamine producing tumor: implications for clinical practice. Stress 10(2), 195–203 (2007)

    Article  CAS  Google Scholar 

  2. S. Hescot et al. Prognosis of Malignant Pheochromocytoma and Paraganglioma (MAPP-Prono Study): A European Network for the Study of Adrenal Tumors Retrospective Study. J. Clin. Endocrinol. Metab. 104(6), 2367–2374 (2019)

    Article  Google Scholar 

  3. L. Fishbein et al. Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 31(2), 181–193 (2017)

    Article  CAS  Google Scholar 

  4. J. Crona et al. Genotype-phenotype correlations in pheochromocytoma and paraganglioma: a systematic review and individual patient meta-analysis. Endocr. Relat. Cancer 26(5), 539–550 (2019)

    Article  CAS  Google Scholar 

  5. I. Jochmanova et al. Hypoxia-inducible factor signaling in pheochromocytoma: turning the rudder in the right direction. J. Natl Cancer Inst. 105(17), 1270–1283 (2013)

    Article  CAS  Google Scholar 

  6. L. Amar et al. Genetic testing in pheochromocytoma or functional paraganglioma. J. Clin. Oncol. 23(34), 8812–8818 (2005)

    Article  CAS  Google Scholar 

  7. K.S. King et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations. J. Clin. Oncol. 29(31), 4137–4142 (2011)

    Article  CAS  Google Scholar 

  8. Y. Assadipour et al. SDHB mutation status and tumor size but not tumor grade are important predictors of clinical outcome in pheochromocytoma and abdominal paraganglioma. Surgery 161(1), 230–239 (2017)

    Article  Google Scholar 

  9. A. Jha et al. Clinical, diagnostic, and treatment characteristics of SDHA-related metastatic pheochromocytoma and paraganglioma. Front. Oncol. 9, 53 (2019)

    Article  Google Scholar 

  10. C. Trapnell et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28(5), 511–515 (2010)

    Article  CAS  Google Scholar 

  11. R.C. Lee, V. Ambros, An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543), 862–864 (2001)

    Article  CAS  Google Scholar 

  12. D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)

    Article  CAS  Google Scholar 

  13. X. Wang et al. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration, and invasion of esophageal squamous cell carcinoma cells. J. Biol. Chem. 290(7), 3925–3935 (2015)

    Article  CAS  Google Scholar 

  14. A.N. Kallen et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 52(1), 101–112 (2013)

    Article  CAS  Google Scholar 

  15. G. Adrian et al. MicroRNA signature associated with prognosis and progression in chronic Lymphocytic Leukemia. New England J. Med. 353(17), 1793–1801 (2005). https://doi.org/10.1056/NEJMoa050995

  16. J.A. Chan, A.M. Krichevsky, K.S. Kosik, MicroRNA-21 Is an Antiapoptotic Factor in Human Glioblastoma Cells. Cancer Res. 65(14), 6029–6033 (2015). https://doi.org/10.1158/0008-5472.CAN-05-0137

    Article  Google Scholar 

  17. A. Cimmino et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad. Sci. 102(39), 13944–13949 (2005). https://doi.org/10.1073/pnas.0506654102

  18. S. Ghosal et al. Long intergenic noncoding RNA profiles of pheochromocytoma and paraganglioma: a novel prognostic biomarker. Int. J. Cancer 146(8), 2326–2335 (2020)

    Article  CAS  Google Scholar 

  19. S. Pillai et al. MicroRNA 183 family profiles in pheochromocytomas are related to clinical parameters and SDHB expression. Hum. Pathol. 64, 91–97 (2017)

    Article  CAS  Google Scholar 

  20. M.D. Robinson, D.J. McCarthy, G.K. Smyth, edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010)

    Article  CAS  Google Scholar 

  21. A. Jeggari, D.S. Marks, E. Larsson, miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28(15), 2062–2063 (2012)

    Article  CAS  Google Scholar 

  22. S. Ghosal et al. miRepress: modelling gene expression regulation by microRNA with non-conventional binding sites. Sci. Rep. 6, 22334 (2016)

    Article  CAS  Google Scholar 

  23. L.J. Castro-Vega et al. Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat. Commun. 6, 6044 (2015)

    Article  CAS  Google Scholar 

  24. A.A. de Cubas et al. Integrative analysis of miRNA and mRNA expression profiles in pheochromocytoma and paraganglioma identifies genotype-specific markers and potentially regulated pathways. Endocr. Relat. Cancer 20(4), 477–493 (2013)

    Article  Google Scholar 

  25. M. Ayala-Ramirez et al. Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J. Clin. Endocrinol. Metab. 96(3), 717–725 (2011)

    Article  CAS  Google Scholar 

  26. B. Hu et al. POSTAR: a platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res. 45(D1), D104–D114 (2017)

    Article  CAS  Google Scholar 

  27. Y.K. Zhou et al. Predicting lncRNA-protein interactions with miRNAs as mediators in a heterogeneous network model. Front. Genet. 10, 1341 (2019)

    Article  CAS  Google Scholar 

  28. G. Eisenhofer et al. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin. Chem. 57(3), 411–420 (2011)

    Article  CAS  Google Scholar 

  29. G. Eisenhofer et al. Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. Endocr.-Relat. Cancer 18(1), 97–111 (2011)

    Article  CAS  Google Scholar 

  30. H. Turkova et al. Characteristics and outcomes of metastatic Sdhb and sporadic pheochromocytoma/paraganglioma: an National Institutes of Health study. Endocr. Pract. 22(3), 302–314 (2016)

    Article  Google Scholar 

  31. L. Ben Aim et al. Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J. Med. Genet. 56(8), 513–520 (2019)

    Article  CAS  Google Scholar 

  32. J. Welander, P. Soderkvist, O. Gimm, Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr.-Relat. Cancer 18(6), R253–R276 (2011)

    Article  CAS  Google Scholar 

  33. G. Eisenhofer et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur. J. Cancer 48(11), 1739–1749 (2012)

    Article  CAS  Google Scholar 

  34. S. Job et al. Telomerase activation and ATRX mutations are independent risk factors for metastatic pheochromocytoma and paraganglioma. Clin. Cancer Res. 25(2), 760–770 (2019)

    Article  CAS  Google Scholar 

  35. L. Fishbein et al. Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat. Commun. 6, 6140 (2015)

    Article  CAS  Google Scholar 

  36. T. Dwight et al. TERT structural rearrangements in metastatic pheochromocytomas. Endocr.-Relat. Cancer 25(1), 1–9 (2018)

    Article  CAS  Google Scholar 

  37. O. Hamidi et al. Outcomes of patients with metastatic phaeochromocytoma and paraganglioma: a systematic review and meta-analysis. Clin. Endocrinol. 87(5), 440–450 (2017)

    Article  Google Scholar 

  38. T.I. Korevaar, A.B. Grossman, Pheochromocytomas and paragangliomas: assessment of malignant potential. Endocrine 40(3), 354–365 (2011)

    Article  CAS  Google Scholar 

  39. E. Patterson et al. The microRNA expression changes associated with malignancy and SDHB mutation in pheochromocytoma. Endocr.-Relat. Cancer 19(2), 157–166 (2012)

    Article  CAS  Google Scholar 

  40. S. Azarbarzin et al. The value of MiR-383, an intronic MiRNA, as a diagnostic and prognostic biomarker in intestinal-type gastric cancer. Biochem. Genet. 55(3), 244–252 (2017)

    Article  CAS  Google Scholar 

  41. C. Zhu, Q. Huang, H. Zhu, miR-383 inhibited the cell cycle progression of gastric cancer cells via targeting cyclin E2. DNA Cell. Biol. 38(8), 849–856 (2019)

    Article  CAS  Google Scholar 

  42. T. Wang et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget 5(21), 10293–10306 (2014)

    Article  Google Scholar 

  43. F.H. Khan et al. RD3 loss dictates high-risk aggressive neuroblastoma and poor clinical outcomes. Oncotarget 6(34), 36522–36534 (2015)

    Article  Google Scholar 

Download references

Funding

This research was supported by the Intramural Research Program of the NIH, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: S.G., K.P. Development of methodology: S.G., B.Z. Acquisition of data and experimentation (acquired and managed patients, performed qRT-PCR, etc.): B.Z., T.-T.H., K.P. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): S.G., B.Z. Writing and review of the manuscript: S.G., B.Z., L.M., A.J., S.T., M.K., M.P., T.P., T.-T.H., S.D., M.A.Z., N.N., U.T.S., D.T., K.P. Study supervision: K.P.

Corresponding author

Correspondence to Karel Pacak.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosal, S., Zhu, B., Huynh, TT. et al. A long noncoding RNA–microRNA expression signature predicts metastatic signature in pheochromocytomas and paragangliomas. Endocrine 75, 244–253 (2022). https://doi.org/10.1007/s12020-021-02857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02857-0

Keywords

Navigation