Skip to main content

Advertisement

Log in

Interferon Gamma-Induced Interferon Regulatory Factor 1 Activates Transcription of HHLA2 and Induces Immune Escape of Hepatocellular Carcinoma Cells

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Immunosuppression developed by cancer cells remains a leading cause of treating failure of immunotherapies. This study aimed to explore the function of human endogenous retrovirus-H long terminal repeat-associating 2 (HHLA2), an immune checkpoint molecule from the B7 family, in the immune escape in hepatocellular carcinoma (HCC). Mouse models with primary HCC or with xenograft tumors were established. The portion of tumor-associated macrophages (TAMs) and the level of PD-L1 in the tumor tissues were examined. THP-1 cells were treated with PMA to obtain a macrophage-like phenotype. The PMA-treated THP-1 cells were co-cultured with the HCC cells in Transwell chambers to examine the function of HHLA2 in chemotactic migration and polarization of macrophages. HHLA2 expression was correlated with infiltration of immune cells, especially macrophages, and was linked to poor prognosis of patients with HCC. HHLA2 knockdown reduced incidence rate of primary HCC in mice. It also reduced tumor metastasis, the portion of M2 macrophages, and the expression of PD-L1 in primary and xenograft tumors. In vitro, HHLA2 upregulation increased expression of PD-L1 in HCC cells indirectly by inducing M2 polarization and chemotactic migration of macrophages. Interferon gamma (IFNG) enhanced expression of interferon regulatory factor 1 (IFR1) in HCC cells, and IFR1 bound to the promoter region of HHLA2 to activate HHLA2 expression. This study suggested that the IFNG/IFR1/HHLA2 axis in HCC induces M2 polarization and chemotactic migration of macrophages, which leads to immune escape and development of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

All the data generated or analyzed during this study are included in this published article.

References

  1. Bray, F., J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68(6): 394–424. https://doi.org/10.3322/caac.21492

  2. European Association for the Study of the Liver. 2018. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. Journal of Hepatology 69 (1): 182–236. https://doi.org/10.1016/j.jhep.2018.03.019.

    Article  Google Scholar 

  3. Marshall, C. 2019. Moral principles in May’s regard for reason in the moral mind. Behavioral and Brain Sciences 42: e160. https://doi.org/10.1017/S0140525X18002674.

    Article  Google Scholar 

  4. Sim, H.W., and J. Knox. 2018. Hepatocellular carcinoma in the era of immunotherapy. Current Problems in Cancer 42 (1): 40–48. https://doi.org/10.1016/j.currproblcancer.2017.10.007.

    Article  PubMed  Google Scholar 

  5. Riley, R.S., C.H. June, R. Langer, and M.J. Mitchell. 2019. Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery 18 (3): 175–196. https://doi.org/10.1038/s41573-018-0006-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morrison, A.H., K.T. Byrne, and R.H. Vonderheide. 2018. Immunotherapy and prevention of pancreatic cancer. Trends in Cancer 4 (6): 418–428. https://doi.org/10.1016/j.trecan.2018.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steven, A., S.A. Fisher, and B.W. Robinson. 2016. Immunotherapy for lung cancer. Respirology 21 (5): 821–833. https://doi.org/10.1111/resp.12789.

    Article  PubMed  Google Scholar 

  8. Zongyi, Y., and L. Xiaowu. 2020. Immunotherapy for hepatocellular carcinoma. Cancer Letters 470: 8–17. https://doi.org/10.1016/j.canlet.2019.12.002.

    Article  CAS  PubMed  Google Scholar 

  9. Drake, C.G., E. Jaffee, and D.M. Pardoll. 2006. Mechanisms of immune evasion by tumors. Advances in Immunology 90: 51–81. https://doi.org/10.1016/S0065-2776(06)90002-9.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, Y. 2015. Cancer immunotherapy: Harnessing the immune system to battle cancer. The Journal of Clinical Investigation 125 (9): 3335–3337. https://doi.org/10.1172/JCI83871.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Christodoulou, M.I., and A. Zaravinos. 2019. New clinical approaches and emerging evidence on immune-checkpoint inhibitors as anti-cancer therapeutics: CTLA-4 and PD-1 pathways and beyond. Critical Reviews in Immunology 39 (5): 379–408. https://doi.org/10.1615/CritRevImmunol.2020033340.

    Article  PubMed  Google Scholar 

  12. Winograd, R., K.T. Byrne, R.A. Evans, P.M. Odorizzi, A.R. Meyer, D.L. Bajor, C. Clendenin, B.Z. Stanger, E.E. Furth, E.J. Wherry, and R.H. Vonderheide. 2015. Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunology Research 3 (4): 399–411. https://doi.org/10.1158/2326-6066.CIR-14-0215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, B., Z. Ran, M. Liu, and Y. Ou. 2019. Prognostic significance of potential immune checkpoint member HHLA2 in human tumors: A comprehensive analysis. Frontiers in Immunology 10: 1573. https://doi.org/10.3389/fimmu.2019.01573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jing, C.Y., Y.P. Fu, Y. Yi, M.X. Zhang, S.S. Zheng, J.L. Huang, W. Gan, X. Xu, J.J. Lin, J. Zhang, S.J. Qiu, and B.H. Zhang. 2019. HHLA2 in intrahepatic cholangiocarcinoma: An immune checkpoint with prognostic significance and wider expression compared with PD-L1. Journal for Immunotherapy of Cancer 7 (1): 77. https://doi.org/10.1186/s40425-019-0554-8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Clark, N.M., and P.D. Bos. 2019. Tumor-associated macrophage isolation and in vivo analysis of their tumor-promoting activity. Methods in Molecular Biology 1884: 151–160. https://doi.org/10.1007/978-1-4939-8885-3_10.

    Article  CAS  PubMed  Google Scholar 

  16. Tang, B., G. Qi, X. Sun, F. Tang, S. Yuan, Z. Wang, X. Liang, B. Li, S. Yu, J. Liu, Q. Huang, Y. Wei, R. Zhai, B. Lei, X. Guo, and S. He. 2016. HOXA7 plays a critical role in metastasis of liver cancer associated with activation of snail. Molecular Cancer 15 (1): 57. https://doi.org/10.1186/s12943-016-0540-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, X., X. Xu, G. Ge, X. Zang, M. Shao, S. Zou, Y. Zhang, Z. Mao, J. Zhang, F. Mao, H. Qian, and W. Xu. 2019. miR498 inhibits the growth and metastasis of liver cancer by targeting ZEB2. Oncology Reports 41 (3): 1638–1648. https://doi.org/10.3892/or.2018.6948.

    Article  CAS  PubMed  Google Scholar 

  18. Johnston, M.P., and S.I. Khakoo. 2019. Immunotherapy for hepatocellular carcinoma: Current and future. World Journal of Gastroenterology 25 (24): 2977–2989. https://doi.org/10.3748/wjg.v25.i24.2977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Janakiram, M., J.M. Chinai, S. Fineberg, A. Fiser, C. Montagna, R. Medavarapu, E. Castano, H. Jeon, K.C. Ohaegbulam, R. Zhao, A. Zhao, S.C. Almo, J.A. Sparano, and X. Zang. 2015. Expression clinical significance and receptor identification of the newest B7 family member HHLA2 protein. Clinical Cancer Research 21 (10): 2359–2366. https://doi.org/10.1158/1078-0432.CCR-14-1495.

    Article  CAS  PubMed  Google Scholar 

  20. Janakiram, M., J.M. Chinai, A. Zhao, J.A. Sparano, and X. Zang. 2015. HHLA2 and TMIGD2: New immunotherapeutic targets of the B7 and CD28 families. Oncoimmunology 4 (8): e1026534. https://doi.org/10.1080/2162402X.2015.1026534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei, L., L. Tang, H. Chang, S. Huo, and Y. Li. 2020. HHLA2 overexpression is a novel biomarker of malignant status and poor prognosis in gastric cancer. Human Cell 33 (1): 116–122. https://doi.org/10.1007/s13577-019-00280-2.

    Article  CAS  PubMed  Google Scholar 

  22. Fang, J., F. Chen, D. Liu, F. Gu, Z. Chen, and Y. Wang. 2020. Prognostic value of immune checkpoint molecules in breast cancer. Bioscience Reports 40 (7): BSR20201054. https://doi.org/10.1042/BSR20201054.

  23. Koirala, P., M.E. Roth, J. Gill, J.M. Chinai, M.R. Ewart, S. Piperdi, D.S. Geller, B.H. Hoang, Y.V. Fatakhova, M. Ghorpade, X. Zang, and R. Gorlick. 2016. HHLA2 a member of the B7 family is expressed in human osteosarcoma and is associated with metastases and worse survival. Scientific Reports 6: 31154. https://doi.org/10.1038/srep31154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, Q.H., K.W. Li, X. Chen, H.X. He, S.M. Peng, S.R. Peng, Q. Wang, Z.A. Li, Y.R. Tao, W.L. Cai, R.Y. Liu, and H. Huang. 2020. HHLA2 and PD-L1 co-expression predicts poor prognosis in patients with clear cell renal cell carcinoma. Journal for Immunotherapy of Cancer 8 (1): e000157. https://doi.org/10.1136/jitc-2019-000157.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pardoll D (2013) Cancer immunology.  2014, 78-97.e5. https://doi.org/10.1016/B978-1-4557-2865-7.00006-0.

  26. Dehne, N., J. Mora, D. Namgaladze, A. Weigert, and B. Brune. 2017. Cancer cell and macrophage cross-talk in the tumor microenvironment. Current Opinion in Pharmacology 35: 12–19. https://doi.org/10.1016/j.coph.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

  27. Chen, Y., Y. Song, W. Du, L. Gong, H. Chang, and Z. Zou. 2019. Tumor-associated macrophages: An accomplice in solid tumor progression. Journal of Biomedical Science 26 (1): 78. https://doi.org/10.1186/s12929-019-0568-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Komohara, Y., Y. Fujiwara, K. Ohnishi, and M. Takeya. 2016. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Advanced Drug Delivery Reviews 99 (Pt B): 180–185. https://doi.org/10.1016/j.addr.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  29. Noy, R., and J.W. Pollard. 2014. Tumor-associated macrophages: From mechanisms to therapy. Immunity 41 (1): 49–61. https://doi.org/10.1016/j.immuni.2014.06.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gresser, I. 1990. Biologic effects of interferons. Journal of Investigative Dermatology 95 (6 Suppl): S66–S71. https://doi.org/10.1111/1523-1747.ep12874776.

    Article  Google Scholar 

  31. Castro, F., A.P. Cardoso, R.M. Goncalves, K. Serre, and M.J. Oliveira. 2018. Interferon-Gamma at the crossroads of tumor immune surveillance or evasion. Frontiers in Immunology 9: 847. https://doi.org/10.3389/fimmu.2018.00847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Buccione, C., A. Fragale, F. Polverino, G. Ziccheddu, E. Arico, F. Belardelli, E. Proietti, A. Battistini, and F. Moschella. 2018. Role of interferon regulatory factor 1 in governing Treg depletion, Th1 polarization inflammasome activation and antitumor efficacy of cyclophosphamide. International Journal of Cancer 142 (5): 976–987. https://doi.org/10.1002/ijc.31083.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Natural Science Research Project of Anhui Educational Committee (No. KJ2020A0549), The First Affiliated Hospital of Bengbu Medical College Science Found for Distinguished Young Scholars (No. 2019byyfyjq03), and Research and Innovation Team of Bengbu Medical College (No. BYKC201908).

Funding

This work was supported by Natural Science Research Project of Anhui Educational Committee (No. KJ2020A0549), The First Affiliated Hospital of Bengbu Medical College Science Found for Distinguished Young Scholars (No. 2019byyfyjq03), and Research and Innovation Team of Bengbu Medical College (No. BYKC201908).

Author information

Authors and Affiliations

Authors

Contributions

RW and HG are the guarantor of integrity of the entire study and contributed to the concepts; XTT and TTZ contributed to the design and definition of intellectual content of this study; and YL, CZ, HBY, and YML contributed to the experimental studies, data acquisition, and statistical analysis. All authors contributed to the manuscript preparation, read, and approved the final manuscript.

Corresponding author

Correspondence to Yumei Li.

Ethics declarations

Ethical Approval

This study was ratified by the Ethical Committee of First Affiliated Hospital of Bengbu Medical College (Approval No.: BYYFY-2019KY035) and conducted according to the Declaration of Helsinki. Written informed consent was received from each respondent. Animal studies were approved by the Animal Ethics Committee of First Affiliated Hospital of Bengbu Medical College (BBMC-2018-JC00316). All animal procedures were conducted in line with the Guide for the Care and Use of Laboratory Animals (NIH, Bethesda, MD, USA).

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rui Wang and Hui Guo contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2118 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Guo, H., Tang, X. et al. Interferon Gamma-Induced Interferon Regulatory Factor 1 Activates Transcription of HHLA2 and Induces Immune Escape of Hepatocellular Carcinoma Cells. Inflammation 45, 308–330 (2022). https://doi.org/10.1007/s10753-021-01547-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01547-3

KEY WORDS

Navigation