Skip to main content

Advertisement

Log in

A methanol extract and N,N-dimethyltryptamine from Psychotria viridis Ruiz & Pav. inhibit Zika virus infection in vitro

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Zika virus (ZIKV) is a public health problem due to its association with serious fetal and neurological complications and the lack of antiviral agents and licensed vaccines against this virus. Surveillance studies have alerted about the potential occurrence of a new South American epidemic episode due to the recent circulation of an African ZIKV strain detected in Brazil. Therefore, it is essential to discover antiviral agents, including natural substances, that are capable of neutralizing the action of ZIKV. Several Psychotria species have antimicrobial and anti-inflammatory properties. Thus, a methanol extract and dimethyltryptamine from Psychotria viridis were evaluated for their ability to inhibit ZIKV infection in vitro by measuring the effective concentration that protects 50% of cells and investigating their possible mechanisms of action. The tested samples showed antiviral activity against ZIKV. The extract showed virucidal activity, affecting viral and non-cellular elements, inactivating the virus before infection or when it becomes extracellular after the second cycle of infection. It was also observed that both extract and dimethyltryptamine could inhibit the virus at intracellular stages of the viral cycle. In addition to dimethyltryptamine, it is believed that other compounds also contribute to the promising virucidal effect observed for the methanol extract. To our knowledge, this is the first report of the activity of a methanolic extract and dimethyltryptamine from Psychotria viridis against cellular ZIKV infection. These two samples, extracted from natural sources, are potential candidates for use as antiviral drugs to inhibit ZIKV infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATCC:

American Type Culture Collection

CC50 :

50% Cytotoxic concentration

CMC:

Carboxymethylcellulose

CZS:

Congenital Zika syndrome

DMSO:

Dimethyl sulfoxide

DMT:

N,N-dimethyltryptamine

EC50 :

50% Effective concentration

FBS:

Fetal bovine serum

HIV:

Human immunodeficiency virus

hpi:

Hours post-infection

min:

Minutes

moi:

Multiplicity of infection

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

RIB:

Ribavirin

SI:

Selective index

TRP:

Tryptamine

WHO:

World Health Organization

ZIKV:

Zika virus

References

  1. Polonio CM, Freitas CL, Zanluqui NG, Peron JPS (2017) Zika virus congenital syndrome: experimental models and clinical aspects. J Venom Anim Toxinas Incl Trop Dis. https://doi.org/10.1186/s40409-017-0131-x

    Article  Google Scholar 

  2. Schwartz DA (2017) Autopsy and postmortem studies are concordant: pathology of Zika Virus infection is neurotropic in fetuses and infants with microcephaly following transplacental transmission. Arch Pathol Lab Med 141:68–72. https://doi.org/10.5858/arpa.2016-0343-OA

    Article  PubMed  Google Scholar 

  3. Petersen LR, Jamieson DJ, Powers AM, Honein MA (2019) Zika Virus. N Engl J Med 37:1552–1563. https://doi.org/10.1056/NEJMra1602113

    Article  CAS  Google Scholar 

  4. Kazmi SS, Ali W, Bibi N, Nouroz F (2020) A review on Zika virus outbreak, epidemiology, transmission and infection dynamics. J Biol Res (Thessalon) 27:5. https://doi.org/10.1186/s40709-020-00115-4

    Article  CAS  Google Scholar 

  5. Jitsatja A, Ramphan S, Promma P, Kuadkitkan A, Wikan N, Uiprasertkul M, Phatihattakorn C, Smith DR (2020) Comparative analysis of a Thai congenital-Zika-syndrome-associated virus with a Thai Zika-fever-associated virus. Arch Virol 165:1791–1801. https://doi.org/10.1007/s00705-020-04667-7

    Article  CAS  PubMed  Google Scholar 

  6. Campos GS, Bandeira AC, Sardi SI (2015) Surto de vírus Zika, Bahia, Brasil. Emerg Infect Dis 21:1885–1886. https://doi.org/10.3201/eid2110.150847

    Article  PubMed  PubMed Central  Google Scholar 

  7. Estes ML, McAllister AK (2016) Maternal immune activation: implications for neuropsychiatric disorders. Science 353:772–777. https://doi.org/10.1126/science.aag3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ventura CV, Maia M, Ventura BV, Linden VVD, Araújo EB, Ramos RC, Rocha MAW, Carvalho MDCG, Belfort R, Ventura LO (2016) Ophthalmological findings in infants with microcephaly and presumable intra-uterus Zika virus infection. Arq Bras Oftalmol 79:1–3. https://doi.org/10.5935/0004-2749.20160002

    Article  PubMed  Google Scholar 

  9. Kreen V, Bosone C, Burkard TR, Spanier J, Kalinke U, Calistri A, Salata C, Christoff RR, Garcez PP, Mirazimi A, Knoblich JA (2021) Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.03.004

    Article  Google Scholar 

  10. Mittal R, Nguyen D, Debs LH, Patel AP, Liu G, Jhaveri VM, Kay SIS, Mittal J, Bandstra ES, Younis RT, Chapagain P, Jayaweera DT, Liu XZ (2017) Zika Virus: an emerging global health threat. Front Cell Infect Microbiol 7:486. https://doi.org/10.3389/fcimb.2017.00486

    Article  PubMed  PubMed Central  Google Scholar 

  11. Knipe DM, Howley PM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (2013) Fields virology 6th, USA. ISBN-10:1-4511-0563-0

  12. Musso D, Gublerb DJ (2016) Zika virus. Clin Microbiol Rev 29:487–524. https://doi.org/10.1128/CMR.00072-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. World Health Organization (WHO). Zika epidemiology update. World Health Organization. Countries and territories with current or previous Zika virus transmission. https://www.who.int/emergencies/diseases/zika/countries-with-zika-and-vectors-table.pdf. Accessed 17 Mar 2021

  14. Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD, Lanciotti RS, Tesh RB (2011) Probable nonvector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17:880–882. https://doi.org/10.3201/eid1705.101939

    Article  PubMed  PubMed Central  Google Scholar 

  15. McCarthy M (2016) Zika virus was transmitted by sexual contact in Texas, health officials report. BMJ. https://doi.org/10.1136/bmj.i720

    Article  PubMed  Google Scholar 

  16. Pan American Health Organization (PAHO) (2017) Zika cases and congenital syndrome associated with Zika virus reported by countries and territories in the Americas, 2015–2017: Cumulative Cases. www.paho.org/hq/dmdocuments/2017/2017-dec-21-phe-ZIKV-cases.pdf. Accessed 9 Apr 2021

  17. Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D (2017) An update on Zika virus infection. Lancet 390:2099–2109. https://doi.org/10.1016/S0140-6736(17)31450-2

    Article  PubMed  Google Scholar 

  18. Kasprzykowski JI, Fukutani KF, Fabio H, Fukutani ER, Costa LC, Andrade BB, Queiroz ATL (2020) A recursive sub-typing screening surveillance system detects the arising of the ZIKV African lineage in Brazil: Is there risk of a new epidemic? Intern J Infec Dis 96:579–581. https://doi.org/10.1016/j.ijid.2020.05.090

    Article  CAS  Google Scholar 

  19. Aubry F, Jacobs S, Darmuzey M, Lequime S, Delang L, Fontaine A, Jupatanakul N, Miot EF, Dabo S, Manet C, Montagutelli X, Baidaliuk A, Gámbaro F, Simon-Lorière E, Gilsoul M, Romero-Vivas CM, Cao-Lormeau V, Jarman RG, Diagne CT, Faye O, Sall AA, Neyts J, Nguyen L, Kaptein SJF, Lambrechts L (2021) Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nat Commun 12:916. https://doi.org/10.1038/s41467-021-21199-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yasuhara-Bell J, Lu Y (2010) Marine compounds and their antiviral activities. Antiviral Res 86:231–224. https://doi.org/10.1016/j.antiviral.2010.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang C, Keller TH, Luo D (2017) Zika Virus protease: an antiviral drug target. Trends Microbiol 25:797–808. https://doi.org/10.1016/j.tim.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  22. Yasuhara-Bell J, Yang Y, Barlow R, Trapido-Rosenthal H, Lu Y (2010) In vitro evaluation of marine-microorganism extracts for anti-viral activity. Virol J. 7:182. https://doi.org/10.1186/1743-422X-7-182

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hassan ST, Masarcikova R, Berchova K (2015) Bioactive natural products with anti-herpes simplex virus properties. J Pharm Pharmacol 67:1325–1336. https://doi.org/10.1111/jphp.12436

    Article  CAS  PubMed  Google Scholar 

  24. Yang H, Zhang H, Yang C, Chen Y (2016) Chemical constituents of plants from the genus psychotria. Chem Biodivers 13:807–820. https://doi.org/10.1002/cbdv.201500259

    Article  CAS  PubMed  Google Scholar 

  25. Carvalho Junior AR, Vieira IJ, Carvalho MG, Braz-Filho R, Lima MAS, Ferreira RO, Maria EJ, Oliveira DB (2017) 13C-NMR spectral data of alkaloids isolated from Psychotria species (Rubiaceae). Molecules. https://doi.org/10.3390/molecules22010103

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quinteiro MMC, Teixeira DC, Moraes MG, Silva JG (2006) Anatomia foliar de Psychotria viridis Ruiz & Pav. (Rubiaceae). Revista U. Rural: Série Ciências da Vida, Seropédica, RJ: EDUR 26:30–41

    Google Scholar 

  27. Calixto NO, Pinto MEF, Ramalho SD, Burger MCM, Bobey AF, Young MC, Bolzani VS, Pinto AC (2016) The genus Psychotria: phytochemistry, chemotaxonomy, ethnopharmacology and biological properties. J Braz Chem Soc 27:1355–1378. https://doi.org/10.5935/0103-5053.20160149

    Article  CAS  Google Scholar 

  28. Lopes S, Poser GL, Kerber VA, Farias FM, Konrath EL, Moreno P, Sobral ME, Zuanazzi JAS, Henriques AT (2004) Taxonomic significance of alkaloids and iridoid glucosides in the tribe Psychotrieae (Rubiaceae). Biochem Syst Ecol 32:1187–1195. https://doi.org/10.1016/j.bse.2004.04.015

    Article  CAS  Google Scholar 

  29. Costa MCM, Figueiredo MC, Cazenave SOS (2005) Ayahuasca: a toxicological approach of the ritualistic use. Rev Psiquiatr Clin 32:310–318. https://doi.org/10.1590/S0101-60832005000600001

    Article  Google Scholar 

  30. Kowalczuk AP, Lozak A, Bachinski R, Duszynski A, Sakowka J, Zjawiony JK (2015) Identification challenges in examination of commercial plant material of Psychotria viridis; Acta Pol Pharm 72:747–755. ISSN 0001-6837

  31. Junior ARC, Ferreira RO, Passos MS, Boeno SIS, Virgens LLG, Ventura TLB, Calixto SD, Lassounskaia E, Carvalho MG, Braz-Filho R, Vieira IJC (2019) Antimycobacterial and Nitric Oxide Production Inhibitory Activities of Triterpenes and Alkaloids from Psychotria nuda (Cham. & Schltdl.) Wawra. Molecules. https://doi.org/10.3390/molecules24061026

    Article  PubMed  Google Scholar 

  32. Dean JG, Liu T, Sean Huff S, Sheler B, Barker SA, Strassman RJ, Michael M, Wang MM, Borjigin J (2019) Biosynthesis and extracellular concentrations of N, N-dimethyltryptamine (DMT) in mammalian brain. Sci Rep 9:9333. https://doi.org/10.1038/s41598-019-45812-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Soares DBS, Duarte LP, Cavalcanti AD, Silva FC, Braga AD, Lopes MTP, Takahashi JA, Vieira-Filho AS (2017) Psychotria viridis: chemical constituents from leaves and biological properties, annals of the Braz. Acad Sci 89:927–938. https://doi.org/10.1590/0001-3765201720160411

    Article  CAS  Google Scholar 

  34. Matos FJA (1988) Introdução à Fitoquímica Experimental. UFC, Fortaleza. ISBN: 85-7282-026-4

  35. Wagner H, Bladt S (1996) Plant drug analysis: a thin Layer Chromatography Atlas (2nd edn) USA. ISBN 978-3-642-00574-9

  36. Dulbecco R (1952) Production of plaques in monolayer tissue cultures by single particles of an animal virus. Proc Natl Acad 38:747–752. https://doi.org/10.1073/pnas.38.8.747

    Article  CAS  Google Scholar 

  37. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  38. Ferraz AC, Moraes TFS, Nizer WSC, Santos M, Tótola AH, Ferreira JM, Vieira-Filho AS, Rodrigues VG, Duarte LP, Magalhães CLB, Magalhães JC (2019) Virucidal activity of proanthocyanidin against Mayaro virus. Antiviral Res 168:76–81. https://doi.org/10.1016/j.antiviral.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  39. Gaujac A, Martinez ST, Gomes AA, Andrade SJ, Pinto AC, David JM, Navickiene S, Andrade JB (2013) Application of analytical methods for the structural characterization and purity assessment of N, N-dimethyltryptamine, a potent psychedelic agent isolated from Mimosa tenuiflora inner barks. Microchem J 109:78–83

    Article  CAS  Google Scholar 

  40. Correa-Neto NF, Masukawa MY, Nishide F, Galfano GS, Tamura F, Shimizo MK, Marcato MP, Santos Junior JG, Linardi A (2017) An ontogenic study of the behavioral effects of chronic intermittent exposure to ayahuasca in mice. Braz J Med Biol Res. https://doi.org/10.1590/1414-431x20176036

    Article  Google Scholar 

  41. Bézivin C, Tomasi S, Lohézic-Le FD, Boustie J (2003) Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine 10:499–503. https://doi.org/10.1078/094471103322331458

    Article  PubMed  Google Scholar 

  42. Aguiar ACC, Murce E, Cortopassi WA, Pimentel AS, Almeida MMFS, Barros DCS, Guedes JS, Meneghetti MR, Krettli AU (2018) Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int J Parasitol Drugs Drug Resist 8:459–464. https://doi.org/10.1016/j.ijpddr.2018.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brunet IJR, Echevarria MD, Luzardo FM, Romero EM, Guerra LMV, Romero JLS (2003) Inhibición de la replicación del virus de inmunodeficiencia humana por extractos de taninos de Pinus caribaea Morelet, Rev Cubana Farm. 37:2. versión impresa ISSN 0034-7515 versión On-line ISSN 1561-2988

  44. Ferreira PG, Ferraz AC, Figueiredo JE, Lima CF, Rodrigues VG, Taranto AG, Ferreira JMS, Brandão GC, Vieira-Filho SA, Duarte LP, de Brito Magalhães CL, de Magalhães JC (2018) Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening. Arco Virol 163:1567–1576. https://doi.org/10.1007/s00705-018-3774-1

    Article  CAS  Google Scholar 

  45. Galabov AS (2007) Virucidal agents in the eve of manorapid synergy, GMS Krankenhhyg Interdiszip, 2. ISSN 1863-5245

  46. Heo Y-A, Deeks ED (2018) Sofosbuvir/Velpatasvir/Voxilaprevir: a review in chronic hepatitis C. Drugs 78(5):577–587. https://doi.org/10.1007/s40265-018-0895-5

    Article  CAS  PubMed  Google Scholar 

  47. Nazari Formagio AS, Santos PR, Zanoli K, Ueda-Nakamura T, Düsman Tonin LT, Nakamura CV, Sarragiotto MH (2009) Synthesis and antiviral activity of β-carboline derivatives bearing a substituted carbohydrazide at C-3 against poliovirus and herpes simplex virus (HSV-1). Eur J Med Chem 44:4695–4701. https://doi.org/10.1016/j.ejmech.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  48. Fink SL, Vojtech L, Wagoner J, Slivinski NSJ, Jackson KJ, Wang R, Khadka S, Luthra P, Basler CF, Polyak SJ (2018) The antiviral drug arbidol inhibits Zika Virus. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-27224-4

    Article  CAS  Google Scholar 

  49. Pécheur E-I, Borisevich V, Halfmann P, Morrey JD, Smee DF, Prichard M, Mire CE, Kawaoka Y, Geisbert TW, Polyak SJ (2016) The synthetic antiviral drug arbidol inhibits globally prevalent pathogenic viruses. J Virol 90:3086–3092. https://doi.org/10.1128/JVI.02077-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Delogu I, Pastorino B, Baronti C, Nougairède A, Bonnet E, Lamballerie X (2011) In vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant. Ant Res 90:99–107. https://doi.org/10.1016/j.antiviral.2011.03.182

    Article  CAS  Google Scholar 

  51. Pereira RS, Aguiar RM, Lemos GS, Vieira Filho SA, de Oliveira DM (2020) Photoprotective property and cytotoxicity of polar extracts of three species of Maytenus native to the Southwest of Bahia. Scientia Plena 16:1–11. https://doi.org/10.14808/sci.plena.2020.027202

    Article  CAS  Google Scholar 

  52. Santos RL, Guimaraes GP, Nobre MSC, Portela AS (2011) Analysis about phytotherapy as an integrating practice in the Brazilian Unified Health System (UHS). Rev Bras Plant Med 13:486–491. https://doi.org/10.1590/S1516-05722011000400014

    Article  Google Scholar 

  53. Ricardo LM, Paula-Souza J, Andrade A, Brandão MGL (2017) Plants from the Brazilian Traditional Medicine: species from the books of the Polish physician Piotr Czerniewicz (Pedro Luiz Napoleão Chernoviz, 1812–1881). Rev Bras Farmacogn 27:388–400. https://doi.org/10.1016/j.bjp.2017.01.002

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Erna Geessien Kroon for kindly providing the Zika virus strain for this work, and the Universidade Federal de São João del-Rei for a Master's degree grant (TSFM) and the facilities to carry out this work. We thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial suport.

Funding

This work was suported by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

TFSM: conceptualization, methodology, software, validation, formal analysis, writing—Original draft. ACF: conceptualization, methodology, software, formal analysis, writing—original draft. WSCN: methodology, software, writing—original draft. AHT: software. DBSS: resources. LPD: resources, writing—review and editing. SAV-F: resources, writing—review and editing. CLBM: resources, writing—review and editing. JCM: conceptualization, formal analysis, investigation, resources, writing—review and editing, supervision, project administration, funding acquisition

Corresponding author

Correspondence to José C. de Magalhães.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Zhenhai Chen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, T.F.S., Ferraz, A.C., da Cruz Nizer, W.S. et al. A methanol extract and N,N-dimethyltryptamine from Psychotria viridis Ruiz & Pav. inhibit Zika virus infection in vitro. Arch Virol 166, 3275–3287 (2021). https://doi.org/10.1007/s00705-021-05230-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05230-8

Navigation