Skip to main content
Log in

Oxidative stress in retinal pigment epithelium impairs stem cells: a vicious cycle in age-related macular degeneration

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Aging, chronic oxidative stress, and inflammation are major pathogenic factors in the development and progression of age-related macular degeneration (AMD) with the loss of retinal pigment epithelium (RPE). The human RPE contains a subpopulation of progenitors (i.e., RPE stem cells—RPESCs) whose role in the RPE homeostasis is under investigation. We evaluated the paracrine effects of mature RPE cells exposed to oxidative stress (H2O2) on RPESCs behavior through co-cultural, morphofunctional, and bioinformatic approaches. RPESCs showed a decline in proliferation, an increase of the senescence-associated β-galactosidase activity, the acquisition of a senescent-like secretory phenotype (SASP), and the reduction of their stemness and differentiation competencies. IL-6 and Superoxide Dismutase 2 (SOD2) seem to be key molecules in RPESCs response to oxidative stress. Our results get insight into stress-induced senescent-associated molecular mechanisms implicated in AMD pathogenesis. The presence of chronic oxidative stress in the microenvironment reduces the RPESCs abilities, inducing and/or maintaining a pro-inflammatory retinal milieu that in turn could affect AMD onset and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

AMD:

Age-related macular degeneration

CRALBP:

Cellular retinaldehyde-binding protein

COX-2:

Cyclooxygenase 2

DMEM:

Dulbecco's modified eagle medium

FBS:

Fetal bovine serum

GA:

Geographic atrophy

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

H-RPE:

Human retinal pigment epithelial cells

H2O2:

Hydrogen peroxide

KLF4:

Kruppel-like factor 4

MSCs:

Mesenchymal stromal cells

MITF:

Microphthalmia-associated transcription factor

OTX2:

Orthodenticle homeobox 2

PAX6:

Paired box 6

PBS:

Phosphate-buffered saline

MEM:

Minimum essential medium eagle

PEDF:

Pigment-epithelium derived factor

RtEGM:

Retinal pigment epithelial cell growth medium

RPESCs:

Retinal pigment epithelial progenitor cells

RPE:

Retinal pigment epithelium

RPE65:

Retinal pigment epithelium-specific 65 kDa protein

SASP:

Senescence-associated secretory phenotype

SA-β-Gal:

Senescence-associated β-galactosidase

SOX2:

SRY-box transcription factor 2

SOD-2:

Superoxide dismutase 2

References

  1. Al-Zamil WM, Yassin SA (2017) Recent developments in age-related macular degeneration: a review. Clin Interv Aging 12:1313–1330. https://doi.org/10.2147/cia.s143508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wong WL, Su X, Li X et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106-116. https://doi.org/10.1016/s2214-109x(13)70145-1

    Article  PubMed  Google Scholar 

  3. Bird AC, Bressler NM, Bressler SB et al (1995) An international classification and grading system for age-related maculopathy and age-related macular degeneration. The international ARM epidemiological study group. Surv Ophthalmol 39:367–374. https://doi.org/10.1016/s0039-6257(05)80092-x

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Layana A, Cabrera-Lopez F, Garcia-Arumi J et al (2017) Early and intermediate age-related macular degeneration: update and clinical review. Clin Interv Aging 12:1579–1587. https://doi.org/10.2147/cia.s142685

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang S, Wang X, Cheng Y et al (2019) Autophagy dysfunction, cellular senescence, and abnormal immune-inflammatory responses in AMD: from mechanisms to therapeutic potential. Oxid Med Cell Longev 2019:3632169. https://doi.org/10.1155/2019/3632169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee JS (2019) Cellular senescence, aging, and age-related disease: special issue of BMB reports in 2019. BMB Rep 52:1–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kinnunen K, Petrovski G, Moe MC, Berta A, Kaarniranta K (2012) Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol 90:299–309. https://doi.org/10.1111/j.1755-3768.2011.02179.x

    Article  CAS  PubMed  Google Scholar 

  8. Gupta T, Saini N, Arora J, Sahni D (2017) Age-related changes in the chorioretinal junction: an immunohistochemical study. J Histochem Cytochem 65:567–577. https://doi.org/10.1369/0022155417726507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blasiak J (2020) Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 77:789–805. https://doi.org/10.1007/s00018-019-03420-x

    Article  CAS  PubMed  Google Scholar 

  10. Glotin AL, Debacq-Chainiaux F, Brossas JY et al (2008) Prematurely senescent ARPE-19 cells display features of age-related macular degeneration. Free Radic Biol Med 44:1348–1361. https://doi.org/10.1016/j.freeradbiomed.2007.12.023

    Article  CAS  PubMed  Google Scholar 

  11. Marazita MC, Dugour A, Marquioni-Ramella MD, Figueroa JM, Suburo M (2016) Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: implications for age-related macular degeneration. Redox Biol 7:78–87. https://doi.org/10.1016/j.redox.2015.11.011

    Article  CAS  PubMed  Google Scholar 

  12. Yu AL, Fuchshofer R, Kook D, Kampik A, Bloemendal H, Welge-Lussen U (2009) Subtoxic oxidative stress induces senescence in retinal pigment epithelial cells via TGF-beta release. Invest Ophthalmol Vis Sci 50:926–935. https://doi.org/10.1167/iovs.07-1003

    Article  PubMed  Google Scholar 

  13. Mariotti C, Lazzarini R, Nicolai M et al (2015) Comparative study between amniotic-fluid mesenchymal stem cells and retinal pigmented epithelium (RPE) stem cells ability to differentiate towards RPE cells. Cell Tissue Res 362:21–3. https://doi.org/10.1007/s00441-015-2185-9

    Article  CAS  PubMed  Google Scholar 

  14. Salero E, Blenkinsop TA, Corneo B et al (2012) Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell 10:88–95. https://doi.org/10.1016/j.stem.2011.11.018

    Article  CAS  PubMed  Google Scholar 

  15. Stanzel BV, Liu Z, Somboonthanakij S et al (2014) Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep 2:64–77. https://doi.org/10.1016/j.stemcr.2013.11.005

    Article  CAS  Google Scholar 

  16. Davis RJ, Alam NM, Zhao C et al (2017) The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue. Stem Cell Rep 9:42–49. https://doi.org/10.1016/j.stemcr.2017.05.016

    Article  CAS  Google Scholar 

  17. Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516. https://doi.org/10.1016/s0140-6736(14)61376-3

    Article  PubMed  Google Scholar 

  18. Lazzarini R, Nicolai M, Pirani V, Mariotti C, Di Primio R (2018) Effects of senescent secretory phenotype acquisition on human retinal pigment epithelial stem cells. Aging (Albany NY) 10:3173–3184. https://doi.org/10.18632/aging.101624

    Article  CAS  Google Scholar 

  19. Jassal B, Matthews L, Viteri G et al (2020) The reactome pathway knowledgebase. Nucleic Acids Res 48:D498–D503. https://doi.org/10.1093/nar/gkz1031

    Article  CAS  PubMed  Google Scholar 

  20. Jacob KD, Noren Hooten N, Trzeciak AR, Evans MK (2013) Markers of oxidant stress that are clinically relevant in aging and age-related disease. Mech Ageing Dev 134:139–157. https://doi.org/10.1016/j.mad.2013.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kauppinen A, Paterno JJ, Blasiak J, Salminen A, Kaarniranta K (2016) Inflammation and its role in age-related macular degeneration. Cell Mol Life Sci 73:1765–1786. https://doi.org/10.1007/s00018-016-2147-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye (London) 15:384–389. https://doi.org/10.1038/eye.2001.141

    Article  CAS  Google Scholar 

  23. Harris J, Subhi Y, Sorensen TL (2017) Effect of aging and lifestyle on photoreceptors and retinal pigment epithelium: cross-sectional study in a healthy Danish population. Pathobiol Aging Age Relat Dis 7:1398016. https://doi.org/10.1080/20010001.2017.1398016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sarna T, Burke JM, Korytowski W et al (2003) Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res 76:89–98. https://doi.org/10.1016/s0014-4835(02)00247-6

    Article  CAS  PubMed  Google Scholar 

  25. Ardeljan D, Chan CC (2013) Aging is not a disease: distinguishing age-related macular degeneration from aging. Prog Retin Eye Res 37:68–89. https://doi.org/10.1016/j.preteyeres.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  26. Stanton CM, Wright AF (2014) Inflammatory biomarkers for AMD. Adv Exp Med Biol 801:251–257. https://doi.org/10.1007/978-1-4614-3209-8_32

    Article  PubMed  Google Scholar 

  27. Abokyi S, To CH, Lam TT, Tse DY (2020) Central role of oxidative stress in age-related macular degeneration: evidence from a review of the molecular mechanisms and animal models. Oxid Med Cell Longev. https://doi.org/10.1155/2020/7901270

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ung L, Pattamatta U, Carnt N, Wilkinson-Berka JL, Liew G, White AJR (2017) Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin Sci (London) 131:2865–2883. https://doi.org/10.1042/cs20171246

    Article  CAS  Google Scholar 

  29. Tower J (2012) Stress and stem cells. Wiley Interdiscip Rev Dev Biol. 1(6):789–802. https://doi.org/10.1002/wdev.56

    Article  CAS  PubMed  Google Scholar 

  30. Kourtis N, Tavernarakis N (2011) Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J 30(13):2520–2531. https://doi.org/10.1038/emboj.2011.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kültz D (2005) Molecular and evolutionary basis of the cellularstress response. Annu Rev Physiol 67:225–267. https://doi.org/10.1146/annurev.physiol.67.040403.103635

    Article  CAS  PubMed  Google Scholar 

  32. Kook D, Wolf AH, Yu AL et al (2008) The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci 49:1712–1720. https://doi.org/10.1167/iovs.07-0477

    Article  PubMed  Google Scholar 

  33. Meyer P, Maity P, Burkovski A et al (2017) A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput Biol 13:e1005741. https://doi.org/10.1371/journal.pcbi.1005741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang SR, Park JR, Kang KS (2015) Reactive oxygen species in mesenchymal stem cell aging: implication to lung diseases. Oxid Med Cell Longev 2015:486263. https://doi.org/10.1155/2015/486263

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bharti K, Nguyen MT, Skuntz S, Bertuzzi S, Arnheiter H (2006) The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. Pigment Cell Res 19:380–394. https://doi.org/10.1111/j.1600-0749.2006.00318.x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a Grant of Università Politecnica delle Marche to Monica Mattioli-Belmonte.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RL, MN, CM, and MMB; methodology and investigation: RL (cell culture, RT-PCR, gene analysis) and GL (Morphological investigation); writing—review and editing: all authors; supervision and funding acquisition: CM, MB, and MMB.

Corresponding author

Correspondence to Michele Nicolai.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests associated with the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazzarini, R., Nicolai, M., Lucarini, G. et al. Oxidative stress in retinal pigment epithelium impairs stem cells: a vicious cycle in age-related macular degeneration. Mol Cell Biochem 477, 67–77 (2022). https://doi.org/10.1007/s11010-021-04258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04258-3

Keywords

Navigation