Skip to main content

Advertisement

Log in

Presentation of landscape-fuzzy approach of forest capability evaluation (LFAFCE) for degraded sites

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Evaluation of forest sites capability (EFSC) is important for the restoration of degraded areas. The current costly EFSC approaches developed based on forest stand structure criteria is too costly for less developed countries (LDC) and not suitable for severely degraded lands. This paper describes an inexpensive Landscape-fuzzy approach for forest capability evaluation (LFAFCE) that can be used to restore degraded forest areas especially in LDC. Five physical criteria of slope, hillshade, altitude, precipitation, and geo formation were evaluated in the Zagros region of western Iran using the fuzzy membership functions, prioritized by analytic network process (ANP), and combined with GIS-based weighted linear combination. We then performed multi-criteria evaluation integrated by GIS. Given the positive correlation between the independent variable of EFSC and the dependent variable of the dominant tree height, the model results were validated based on the linear regression of the relationship between the two variables. The results of the validation showed that the linear regression model with appropriate coefficient of determination was significant. The results of EFSC by LFAFCE showed that most of the forest area was allocated to two classes: well (75%) and moderate (21.8%). In total, only 3.2% of the area belonged to the marginal (0.4%), high (0.1%), and unsuitable regions (2.7%) classes. Our results demonstrate that LFAFCE is valid for low-cost evaluation of degraded area in Zagros and for other similar areas, if calibrated, where normal forest mass parameters are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adl, H., Marvi Mohajer, M. R., & Makhdoom, M. (2007). Effective factors on ecological capability in the northern forest of Iran. Iranian Journal of Forest and Poplar Research, 15(3), 289–300. In Persian.

    Google Scholar 

  • Amiri, M. J., Salman Mahiny, A., Hosseini, S. M., Jalali, SGh., Ezadkhasty, Z., & Karami, S. (2013). OWA analysis for ecological capability assessment in watersheds. International Journal of Environmental Research, 7(1), 241–254.

    Google Scholar 

  • Amiri, M. J., Salman Mahiny, A., Jalali, S. G. H., Hosseini, S. M., & Azari Dehkordi, F. (2010). A comparison of maps overlay systemic method and Boolean-Fuzzy Logic in the ecological capability evaluation of No. 33 and 34 watershed forests in northern Iran. Environmental Sciences, 7(2), 109–123. In Persian.

    Google Scholar 

  • Arnoni Costa, E., Schroder, T., & Guimaraes Finger, C. A. (2016). Height-diameter relationships for Araucaria angustifolia (Bertol) Kuntez in southern Brazil. Biology, 22(4), 493–500.

    Google Scholar 

  • Babaie-Kafaky, S., Mataji, A., & Ahmadi Sani, N. (2009). Ecological capability assessment for multiple-use in forest areas using GIS-based multiple criteria decision making approach. American Journal of Environmental Sciences, 5(6), 714–721.

    Article  Google Scholar 

  • Bailey, R. G. (1987). Suggested hierarchy of criteria for multiscale ecosystem mapping. Landscape and Urban Planning, 14, 313–319.

    Article  Google Scholar 

  • Barnes, B., Zak, D., Denton, S., & Spur, S. (1997). Forest ecology (4th ed.). Wiley.

    Google Scholar 

  • Bibby, J. S., Heslop, R. E. F., & Hartnup, R. (1988). Land capability classification for forestry in Britain, Soil Survey Monograph (p. 34). Macaulay Land Use Research Institute.

    Google Scholar 

  • Carmean, W. H. (1975). Forest site quality evaluation in the United States. Advances in Agronomy, 27, 209–269.

    Article  Google Scholar 

  • Chen, L., Tang, L., Ren, Y., & Liao, J. (2015). Ecological land classification: A quantitative classification and ordination of forest communities adjacent to a rapidly expanding urban area in southeast coastal China. Acta Ecologica Sinica, 35, 46–51.

    Article  CAS  Google Scholar 

  • Cleland, D. T., Avers, P. E., McNab, W. H., Jensen, M. E., Bailey, R. G., King, T., & Russell, W. E. (1997). National hierarchical framework of ecological units. (pp. 181–200) in M.S. 17.

  • Drake, J. B., Dubayah, R. O., Knox, R. G., Clark, D. B., & Blair, J. B. (2002). Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sensing of Environment, 81(2–3), 378–392.

    Article  Google Scholar 

  • Eastman, J. R., Jin, W., Kyem, P., & Toledano, J. (1995). Raster procedures for multi-objective decisions. Photogrammetric Engineering and Remote Sensing, 61(5), 539–547.

    Google Scholar 

  • European Union. (2015). Mapping and assessment of forest ecosystems and their services. Publication Office of European Commission. Retrieved from http://bookshop.europa.eu.

  • FAO. (1976). A framework for land valuation. FAO Soils Bulletin, No 32. Rome, FAO. 72p.

  • FAO. (1984). Land evaluation for forestry. FAO forestry paper, No 48. Rome, FAO. 123p.

  • FAO. (2015). Knowledge reference for national forest assessments. Retrieved from http://www.fao.org/3/a-i4822e.

  • Galiana-Martin, L., & Karlosson, O. (2011). Development of a methodology for the assessment of vulnerability related to wildland fires using a Multi-Criteria Evaluation. Geographical Research, 50(3), 304–319.

    Article  Google Scholar 

  • Haeussler, S. (2011). Rethinking biogeoclimatic ecosystem classification for a Whanging world. Environmental Reviews, 19, 254–277. https://doi.org/10.1139/A11-008

    Article  Google Scholar 

  • Hanssen, F., May, R., & Dijk, J. (2018). Spatial multi-criteria decision analysis tool suite for consensus-based siting of renewable energy structures. Journal of Environmental Assessment Policy and Management, 20(3), 28.

    Article  Google Scholar 

  • Hyun Shik, M., & Solomon, T. (2020). Land suitability evaluation for the growth of Chamaecyparis obtusa forest in Gyeongnam Province, South Korea. Agriculture, Forestry and Fisheries, 9(4), 122–127.

    Article  Google Scholar 

  • Ismail, M. H. (2009). Developing policy for suitable harvest zone using multi criteria evaluation and GIS-based decision support system. International Journal of Economics and Finance, 1(2), 105–117.

    Article  Google Scholar 

  • Kandari, A. M., Kasim, S., Limi, M. A., & Karim, J. (2015). Land suitability evaluation for plantation forest development based on multi-criteria approach. Agriculture, Forestry and Fisheries, 4, 228–238. https://doi.org/10.11648/j.aff.20150405.15

    Article  Google Scholar 

  • Kantarci, M. D. (1991). The site classification of Mediterranean region (p. 150). Forest Ministry Press.

    Google Scholar 

  • Kassim, A. R., Afizzul Misman, M., Azahari Faidi, M., & Omar, H. (2016). A tool for assessing ecological status of forest ecosystem. In 8th IGRSM International Conference and Exhibition on Remote Sensing & GIS (IGRSM), IOP Publishing IOP Conf. Series: Earth and Environmental Science (Vol. 37).

  • Krause, S., Sanders, T., Mund, J. P., & Greve, K. (2019). UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remot Sensing., 11(758), 1–18. https://doi.org/10.3390/rs11070758

    Article  Google Scholar 

  • Kursad, O., & Serkan, G. (2010). Ecological land classification and mapping based on vegetation-environment hierarchical analysis- a case study of Buldan forest district (Turkey). Polish Journal of Ecology., 58(1), 56–67.

    Google Scholar 

  • Kusbach, A., Friedl, M., Zouhar, V., Mikita, T., & Sebesta, J. (2017). Assessing forest classification in a landscape-level frame work: An example from central European forests. Forests, 8(12), 461.

    Article  Google Scholar 

  • Kusbach, A., Sterba, T., Sebesta, J., & Mikita, T. (2019). Ecological zonation as a tool for restoration of degraded forests in northern Mongolia. Geography, Environment, Sustainability, 12(3), 98–116.

    Article  Google Scholar 

  • Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., Spirito-Santo, F. D., Hunter, M. O., Oliveira, R. D. E., & Camargo, P. B. D. E. (2005). Estimates of forest canopy height and aboveground biomass using ICESat. Geophysics Research and Letters. https://doi.org/10.1029/2005GL023971

    Article  Google Scholar 

  • Makhdoom, M. (1993). Fundamental of land use planning (p. 289). Tehran University. In Persian.

    Google Scholar 

  • Malekghasemi, A., & Babaei, S. (2005). The introduction of suitable species for afforestation and green area development in semi-arid zones with the use of GIS and on the basis of land-use planning principles. Journal of Agriculture Sciences, 11, 69–80. In Persian.

    Google Scholar 

  • Maleknia, R., Feghhi, J., Makhdoom, M., Marvi Mohajer, M., & Zuberi, M. (2010). Capability assessment model developed especially for strategic planning in the forest Kheyrud. Journal of Environmental Research, 1(2), 13–18. In Persian.

    Google Scholar 

  • Martirea, S., Castellani, V., & Salac, S. (2015). Carrying capacity assessment of forest resources: Enhancing environmental sustainability in energy production at local scale. Resources, Conservation and Recycling, 94, 11–20.

    Article  Google Scholar 

  • Mason, W. L. (2004). Multiple-use silviculture in temperate plantation forestry. Encyclopedia of Forest Sciences, Oxford, UK, 2: 859–865, ISBN 0-12-145160-7.

  • McHarg, Ian. (1969). Design with nature. American Museum of Natural History. (p. 197).

  • Najafifar, A. (2007). Selection of forest species based on ecological capability of afforestation units in Zagross region (Case study of watershed of Sarab Darehshahr in Ilam Province). Pajohesh and Sazandegi, 75, 28–36. In Persian.

    Google Scholar 

  • Najafifar, A. (2010). Proposal of a forest physical model for ecological capability evaluation in Zagros vegetation zone (case study: Masby region, Abdanan city, Ilam province). Iranian Journal of Forest and Poplar Research, 18(3), 405–416. In Persian.

    Google Scholar 

  • Najafifar, A. (2017). Presentation of comprehensive model of land use planning for multiple uses in southern Zagros woodlands (case study, Ilam province, Badreh Township, Kabirkouh). Ph.D thesis, College of Forest Science, Gorgan University of Agricultural Sciences and Natural Resources (p. 341) (In Persian).

  • Najafifar, A., Hosseinzadeh, J., & Karamshahi, A. (2019). The role of hillshade, aspect, and toposhape in the woodland dieback of arid and semi-arid ecosystems: A case study in Zagros woodlands of Ilam province, Iran. Journal of Landscape Ecology, 12(2), 79–91.

    Article  Google Scholar 

  • Najafifar, A., Raafatnia, N., Rahmani, R., Hosseinzadeh, J., & Karamshahi, A. A. (2003). A model for ecological capability evaluation Zagross Forests. Pajouhesh-Va- Sazandegi, 16(4), 34–39. In Persian.

    Google Scholar 

  • Nogueira, E. M., Nelson, B. W., Fwarnsidi, P. M., Franca, M. B., & Oliveira, Á. C. A. (2008). Tree height in Brazil’s “arc of deforestation”: Shorter trees in south and southwest Amazonia imply lower biomass. Forest Ecology and Management, 255, 2963–2972.

    Article  Google Scholar 

  • Norman, D., & Olaf, H. (1963). An experimental application of the Delphi method to the use of experts. Management Science., 9(3), 458–467.

    Article  Google Scholar 

  • Nowak, D. J., Crane, D. E., Stevens, J. C., Hoehn, R. E., & Walton, J. T. (2008). A ground-based method of assessing urban forest structure and ecosystem services. Aboriculture & Urban Forestry., 34(6), 347–358.

    Article  Google Scholar 

  • Pflugmacher, D., Cohen, W., Kennedy, R., & Lefsky, M. (2008). Regional applicability of forest height and aboveground biomass models for the geoscience laser altimeter system. Forest Science, 54(6), 647–657.

    Google Scholar 

  • Quichimbo, P., Jiménez, L., Veintimilla, D., Tischer, A., Sven Gunter, S., Mosandl, R., & Hamer, U. (2017). Forest site classification in the southern Andean region of Ecuador: A case study of Pine plantations to collect a base of soil attributes. Forests, 8, 473. https://doi.org/10.3390/f8120473

    Article  Google Scholar 

  • Saaty, T. L. (1999). Fundamentals of the analytic network process. In Proceedings of ISAHP, Kobe, Japan. August 12–14, p. 14.

  • Sayre, R., Roca, E., Sedaghatkish, G., Young, B., Keel, S., Roca, R., & Sheppard, S. (2000). Nature in focus: Rapid ecological assessment (p. 202). Island Press.

    Google Scholar 

  • Sims, R. A., & Uhlig, P. (1992). The current status of forest site classification in Ontario. The Forestry Chronicle, 68(1), 64–77.

    Article  Google Scholar 

  • Skovsgaard, J. P., & Vanclay, J. K. (2008). Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry: an International Journal of Forest Research., 81(1), 13–31.

    Article  Google Scholar 

  • Stolte, K. W., Conkling, B. L., Fulton, S., & Bradley, M. P. (2012). State of mid-Atlantic region forests in 2000. US Forest Service, Southern Research Station, General Technical Report SRS-162, p. 216.

  • USDA FS (U.S. Department of Agriculture, Forest Service). (2014). The forest inventory and analysis phase 3 indicators database 6.0: Description and User Guide. Washington, DC, p. 203. Retrieved from http://www.fia.fs.fed.us/library/databasedocumentation. (December 17, 2015).

  • USDA FS (U.S. Department of Agriculture, Forest Service). (2016). Forest Landscape Assessment Tool (FLAT): rapid assessment for land management. General Technical Report, PNW-GTR-941. Pacific Northwest Research Station, p. 84. https://www.fs.fed.us/pnw/pubs/pnw_gtr941.pdf.

  • USDI NPS (U.S. Department of the Interior, National Park Service). (2009). NPS natural resource condition assessments (NRCAs): standards and guidelines. Washington DC. https://www.nature.nps.gov/water/nrca/assets/docs/NRCA_Standards_and_Guidelines_Sept2009.pdf. (December 17, 2015).

  • Walter, H. (1985). Ecological systems of the geobiosphere. Ecological principles in global perspective (Vol. 1). Springer.

    Book  Google Scholar 

  • Wright, R. G., Murray, M. P., & Merrill, T. (1998). Ecoregions as a level of ecological analysis. Biological Conservation, 86, 207–213.

    Article  Google Scholar 

  • Wu, Y., Qin, K., Zhang, M., & Li, M. (2013). Study on forest site classification of southern Xiaoxing’an Mountain in northeast of China. World Rural Obs, 5, 27–32.

    Google Scholar 

  • Yamada, Y., & Yamaura, Y. (2017). Decision support system for adaptive regional-scale forest management by multiple decision-makers. Forests, 8, 453.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Article  Google Scholar 

  • Zamani, S., Pire Bavaghar, M., Shabanian, N., & Ghazanfari, H. (2014). Suitability analysis for plantation development (case study: Sanandaj). Iranian Journal of Forest and Poplar Research, 22(1), 1–12. In Persian.

    Google Scholar 

  • Zobeiry, M. (1994). Forest inventory (measurement of tree and stand) (p. 401). University of Tehran. In Persian.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Najafifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafifar, A., Mirzaei, J. & Heydari, M. Presentation of landscape-fuzzy approach of forest capability evaluation (LFAFCE) for degraded sites. Environ Monit Assess 193, 659 (2021). https://doi.org/10.1007/s10661-021-09368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09368-5

Keywords

Navigation