Skip to main content
Log in

Fluorescent sensing of free bilirubin at nanomolar level using a Langmuir–Blodgett film of glucuronic acid–functionalized gold nanoclusters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Serum bilirubin is an important indicator to assess liver function and diagnose various types of liver diseases. The level of serum bilirubin is also negatively correlated with the risk of cardiovascular disease and cancer. We had fabricated a fluorescent film sensor aiming at free bilirubin detection at the nanomolar level. Gold nanoclusters capped by human serum albumin (HSA–AuNCs) were utilized as a fluorescent platform for bilirubin biorecognition. HSA–AuNCs were functionalized with glucuronic acid to increase the binding sites for bilirubin. An ultrathin film of glucuronic acid–functionalized gold nanoclusters was obtained by the Langmuir-Blodgett (LB) technique. When exposed to bilirubin, the interaction between free bilirubin and the functionalized AuNCs resulted in fluorescent quenching of the film. Good linearity could be achieved for the quenching efficiency versus the logarithm of free bilirubin concentration over a concentration range of 1.00 nM~5.00 μM. The limit of detection (LOD) was calculated to be (2.70 ± 0.14) × 10−1 nM (S/N = 3). The film sensor presents a good anti-interference capability towards common substances coexisting with bilirubin in serum. Satisfactory results achieved in the tests of real serum samples indicate that the LB film sensor can be used for bilirubin determination in nanomolar concentration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fevery J. Bilirubin in clinical practice: a review. Liver Int. 2008;28:592–605.

    Article  CAS  PubMed  Google Scholar 

  2. McDonagh AF. Controversies in bilirubin biochemistry and their clinical relevance. Semin Fetal Neonatal Med. 2010;15:141–7.

    Article  PubMed  Google Scholar 

  3. Shapiro S. Bilirubin toxicity in the developing nervous system. Pediatr Neurol. 2003;9:410–21.

    Article  Google Scholar 

  4. Ahlfors CE, Wennberg RP, Ostrow JD, Tiribelli C. Unbound (free) bilirubin: improving the paradigm for evaluating neonatal jaundice. Clin Chem. 2009;55:1288–99.

    Article  CAS  PubMed  Google Scholar 

  5. Chieu DT, Godfrey SB. Interactions between bilirubin and albumins using picosecond fluorescence and circularly polarized luminescence spectroscopy. J Am Chem Soc. 1982;104:6741–7.

    Article  Google Scholar 

  6. Krijgsman B, Papadakis JA, Ganotakis ES, Mikhailidis DP, Hamilton G. The effect of peripheral vascular disease on the serum levels of natural anti-oxidants: bilirubin and albumin. Int Angiol. 2002;21:44–52.

    CAS  PubMed  Google Scholar 

  7. Ohnaka K, Kono S. Bilirubin, cardiovascular diseases and cancer: epidemiological perspectives. Expert Rev Endocrinol Metab. 2014;5(6):891–904.

    Article  Google Scholar 

  8. Freisling H, Khoei NS, Viallon V, Wagner KH. Gilbert’s syndrome, circulating bilirubin and lung cancer: a genetic advantage. Thorax. 2020;75:916–7.

    Article  PubMed  Google Scholar 

  9. Berska J, Bugajska J, Sztefko K. Newborns bilirubin concentration determined by different methods in relation to hematocrit and albumin level. J Med Biochem. 2020;39:171–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng J, Han Y, Deng L, Guo S. Carbon nanotube-bilirubin oxidase bioconjugate as a new biofuel cell label for self-powered immunosensor. Anal Chem. 2014;86:11782–8.

    Article  CAS  PubMed  Google Scholar 

  11. Batra B, Lata S, Rana SJS, Pundir CS. Construction of an amperometric bilirubin biosensor based on covalent immobilization of bilirubin oxidase onto zirconia coated silica nanoparticles/chitosan hybrid film. Biosens Bioelectron. 2013;44:64–9.

    Article  CAS  PubMed  Google Scholar 

  12. Filip J, Sefcovicová J, Gemeiner P, Tkac J. Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochim Acta. 2013;87:366–74.

    Article  CAS  Google Scholar 

  13. Kawamoto S, Koyano K, Ozaki M, Arai T, Kusaka T. Effects of bilirubin configurational photoisomers on the measurement of direct bilirubin by the vanadate oxidation method. Ann Clin Biochem. 2021;58:311–7.

    Article  CAS  PubMed  Google Scholar 

  14. Martelanc M, Žiberna L, Passamonti S, Franko M. Direct determination of free bilirubin in serum at sub-nanomolar levels. Anal Chim Acta. 2014;809:174–82.

    Article  CAS  PubMed  Google Scholar 

  15. Zelenka J, Leníček M, Muchová L, Jirsa M, Kudla M, Balaž P, Zadinová M, Ostrow JD, Wong RJ, Vítek L. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J Chromatogr B. 2008;867:37–42.

    Article  CAS  Google Scholar 

  16. Sun H, Nie Z, Fung YS. Determination of free bilirubin and its binding capacity by HSA using a microfluidic chip-capillary electrophoresis device with a multi-segment circular-ferrofluid-driven micromixing injection. Electrophoresis. 2010;31:3061–9.

    Article  CAS  PubMed  Google Scholar 

  17. Gupta N, Singh T, Chaudhary R, Garg SK, Sandhu GS, Mittal V, Gupta R, Bodin R, Sule S. Bilirubin in coronary artery disease: cytotoxic or protective? World J Gastrointest Pharmacol Ther. 2016;7:469–76.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsai MT, Tarng DC. Beyond a measure of liver function: bilirubin acts as a potential cardiovascular protector in chronic kidney disease patients. Int J Mol Sci. 2019;20:117.

    Article  Google Scholar 

  19. Martelanc M, Žiberna L, Passamonti S, Franko M. Application of high-performance liquid chromatography combined with ultra-sensitive thermal lens spectrometric detection for simultaneous biliverdin and bilirubin assessment at trace levels in human serum. Talanta. 2016;154:92–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bandiera A, Corich L, Tommasi S, Bortoli MD, Pelizzo P, Stebel M, Paladin D, Passamonti S. Human elastin-like polypeptides as a versatile platform for exploitation of ultrasensitive bilirubin detection by UnaG. Biotechnol Bioeng. 2020;117:354–61.

    Article  CAS  PubMed  Google Scholar 

  21. Shanmugaraj K, Abraham JS. Water-soluble MoS2 quantum dots as effective fluorescence probe for the determination of bilirubin in human fluids. Spectrochim Acta A. 2019;215:290–6.

    Article  CAS  Google Scholar 

  22. Zhao W, Zong C, Lei T, Tian W, Sun M, Liu X, Zhang Q, Gai H. Ultrasensitive free bilirubin detection in whole blood via counting quantum dots aggregates at single nanoparticle level determination of bilirubin at nanomolar level. Sensors Actuators B Chem. 2018;275:95–100.

    Article  CAS  Google Scholar 

  23. Xu D, Duan L, Jia W, Yang G, Gu Y. Fabrication of Ag@Fe2O3 hybrid materials as ultrasensitive SERS substrates for the detection ultrasensitives and bilirubin in human blood. Microchem J. 2021;161:105799.

    Article  CAS  Google Scholar 

  24. Singha SS, Mondal S, Bhattacharya TS, Das L, Sen K, Satpati B, Das K, Singha A. Au nanoparticles functionalized 3D-Mfunctionalized: an efficient SERS matrix for biomolecule sensing. Biosens Bioelectron. 2018;119:10–7.

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Zhu W, Wan A, Liu L. The mechanism and application of the protein-stabilized gold nanocluster sensing system. Analyst. 2017;142:567–81.

    Article  CAS  PubMed  Google Scholar 

  26. Shamsipur M, Molaabasi F, Hosseinkhani S, Rahmati F. Detection of early stage apoptotic cells based on label-free cytochrome c assay using bioconjugated metal nanoclusters as fluorescent probes. Anal Chem. 2016;88:2188–97.

    Article  CAS  PubMed  Google Scholar 

  27. Chen T, Hu Y, Cen Y, Chu X, Lu Y. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J Am Chem Soc. 2013;135:11595–602.

    Article  CAS  PubMed  Google Scholar 

  28. Qu D, Zhang J, Chu G, Jiang H, Wu C, Xu Y. Chiral fluorescent films of gold nanocluster and photonic cellulose with modulated fluorescence emission. J Mater Chem C. 2016;4:1764–8.

    Article  CAS  Google Scholar 

  29. Ho-Wu R, Yau SH, Goodson T III. Linear and nonlinear optical properties of monolayer-protected gold nanocluster films. ACS Nano. 2016;10:562–72.

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Xiao W, Huang R, Shi Y, Fang C, Chen Z. A gold nanoclusters film supported on polydopamine for fluorescent sensing of free bilirubin. Sensors. 2019;19:1726.

    Article  CAS  PubMed Central  Google Scholar 

  31. Lin Z, Luo F, Dong T, Zheng L, Wang Y, Chi Y, Chen G. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper (II) ion in aqueous solution. Analyst. 2012;137:2394–9.

    Article  CAS  PubMed  Google Scholar 

  32. Xiao W, Zhi D, Pan Q, Liang Y, Zhou F, Chen Z. A ratiometric bilirubin sensor based on a fluorescent gold nanocluster film with dual emissions. Anal Methods. 2020;12:5691–8.

    Article  CAS  PubMed  Google Scholar 

  33. Guan WJ, Zhou WJ, Lu C. Ultrathin luminescence film based on gold nanoclusters with aggregation-induced emission. Acta Chim Sin. 2016;74:929–34.

    Article  CAS  Google Scholar 

  34. Roy D, Park JW. Spatially nanoscale-controlled functional surfaces toward efficient bioactive platforms. J Mater Chem B. 2015;3:5135–49.

    Article  CAS  PubMed  Google Scholar 

  35. Xu F, Zhen G, Yu F, Kuennemann E, Textor M, Knoll W. Combined affinity and catalytic biosensor: in situ enzymatic activity monitoring of surface-bound enzymes. J Am Chem Soc. 2005;127:13084–5.

    Article  CAS  PubMed  Google Scholar 

  36. Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131:888–9.

    Article  CAS  PubMed  Google Scholar 

  37. Guan G, Zhang SY, Cai YQ, Liu S, Bharathi MS, Low M, Yu Y, Zheng YG, Zhang YW. Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. Chem Commun. 2014;50:5703–5.

    Article  CAS  Google Scholar 

  38. Miller JN. Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc. 1979;16:203–8.

    CAS  Google Scholar 

  39. Miller JN. Photoluminescence and chemiluminescence methods of drug analysis. J Pharm Biomed. 1983;1:525–35.

    Article  CAS  Google Scholar 

  40. Salim MM, Sharkasy M, Belal F, Walash M. Multi-spectroscopic and molecular docking studies for binding interaction between fluvoxamine and human serum albumin. Spectrochim Acta A. 2021;119495.

  41. Miyazaki CM, Camilo DE, Shimizu FM, Ferreira M. Improved antibody loading on self-assembled graphene oxide films for using in surface plasmon resonance immunosensors. Appl Surf Sci. 2019;490:502–9.

    Article  CAS  Google Scholar 

  42. Sharma A, Pandey CM, Matharu Z, Soni U, Sapra S, Sumana G, Pandey MK, Chatterjee T, Malhotra BD. Nanopatterned cadmium selenide Langmuir-Blodgett platform for leukemia detection. Anal Chem. 2012;84:3082–9.

    Article  CAS  PubMed  Google Scholar 

  43. Sanchezgonzalez S, Ruizgarcia J, Galvezruiz MJ. Langmuir–Blodgett films of biopolymers: a method to obtain protein multilayers. J Colloid Interface Sci. 2003;267:286–93.

    Article  CAS  Google Scholar 

  44. Liang L, Tajmir-Riahi HA, Subirade M. Interaction of beta-lactoglobulin with resveratrol and its biological implications. Biomacromolecules. 2008;9:50–6.

    Article  CAS  PubMed  Google Scholar 

  45. Acharya S, Hill JP, Ariga K. Soft Langmuir-Blodgett technique for hard nanomaterials. Adv Mater. 2009;21:2959–81.

    Article  CAS  Google Scholar 

  46. Swierczewski M, Maroni P, Chenneviere A, Dadras MM, Lee L, Bürgi T. Deposition of extended ordered ultrathin films of Au38(SC2H4Ph)24 nanocluster using Langmuir–Blodgett technique. Small. 2021;2005954.

  47. Acuña-Nelson SM, Bastías-Montes JM, Cerda-Leal FR, Parra-Flores JE, Toledo PG. Nanocoatings of bovine serum albumin on glass: effects of pH and temperature. J Nanomater. 2020;2020:1–11.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 61761013 and 61864001), the Natural Science Foundation of Guangxi Province (No. 2017GXNSFAA198116), and the Guangxi Key Laboratory of Automatic Detection Technology and Instruments Foundation Project (No. YQ17113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenxiang Xiao or Hua Li.

Ethics declarations

Ethics approval

The human serum samples used in this study were approved by the Guangxi Key Laboratory of Metabolic Diseases Research Ethics Committee in Guilin, China.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 994 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Liu, J., Xiong, Y. et al. Fluorescent sensing of free bilirubin at nanomolar level using a Langmuir–Blodgett film of glucuronic acid–functionalized gold nanoclusters. Anal Bioanal Chem 413, 7009–7019 (2021). https://doi.org/10.1007/s00216-021-03660-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03660-6

Keywords

Navigation