Skip to main content

Advertisement

Log in

Long non-cording RNA XIST promoted cell proliferation and suppressed apoptosis by miR-423-5p/HMGA2 axis in diabetic nephropathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This research studied the effect of long non-coding RNA X-inactive-specific transcript (XIST) on DN. The effect of high glucose (HG) on the expression of XIST and miR-423-5p was detected by quantitative real-time PCR (qRT-PCR) in human kidney (HK) cells (human glomerular mesangial cells (HMCs) and human kidney-2 (HK-2) cells). The effect of XIST depletion and miR-423-5p inhibition or overexpression on high mobility group protein A2 (HMGA2) protein level was examined by western blot in HG-induced HK cells. The impacts of XIST depletion on viability and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry assays in HG-induced HK cells. We found the expression of XIST and HMGA2 protein was significantly upregulated in DN tissues and cells. Moreover, HG treatment induced the upregulation of XIST and HMGA2 protein level in HK cells. Besides, both XIST depletion and HMGA2 depletion decreased cell proliferation but increased apoptosis in HG-treated HK cells. Furthermore, HMGA2 upregulation or miR-423-5p inhibition partly eliminated the effects of XIST depletion on cell proliferation, apoptosis of HG-treated HK cells. Interestingly, HMGA2 upregulation partly reversed miR-423-5p overexpression-mediated suppression on viability and promotion on apoptosis in HG-treated HK cells. Mechanistically, XIST sponged miR-423-5p to regulate HMGA2 expression in DN cells. Taken together, XIST depletion suppressed proliferation and promoted apoptosis via miR-423-5p/HMGA2 axis in HG-treated HK cells, which may provide a potential therapeutic target for DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

Abbreviations

DN:

Diabetic nephropathy

CKD:

Chronic kidney diseases

ESKD:

End-stage kidney disease

ECM:

Extracellular matrix

XIST:

Long non-coding RNA X-inactive-specific transcript

HMCs:

Human glomerular mesangial cells

qRT-PCR:

RNA isolation and quantitative real-time polymerase chain reaction

References

  1. Choi BH, Kang KS, Kwak MK (2014) Effect of redox modulating NRF2 activators on chronic kidney disease. Molecules 19:12727–12759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Duran-Salgado MB, Rubio-Guerra AF (2014) Diabetic nephropathy and inflammation. World J Diabetes 5:393–398

    Article  PubMed  PubMed Central  Google Scholar 

  3. Feliers D, Lee HJ, Kasinath BS (2016) Hydrogen sulfide in renal physiology and disease. Antioxid Redox Signal 25:720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR et al (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 24:302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Albvr VR, Tan SH, Candasamy M, Bhattamisra SK (2019) Diabetic nephropathy: an update on pathogenesis and drug development. Diabetes Metab Syndr 13:754–762

    Article  Google Scholar 

  6. Chung AC (2015) Micrornas in diabetic kidney disease. Adv Exp Med Biol 888:253–269

    Article  PubMed  CAS  Google Scholar 

  7. Tung CW, Hsu YC, Shih YH, Chang PJ, Lin CL (2018) Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology (Carlton) 23(Suppl 4):32–37

    Article  CAS  Google Scholar 

  8. Vallon V, Komers R (2011) Pathophysiology of the diabetic kidney. Compr Physiol 1:1175–1232

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ziyadeh FN, Wolf G (2008) Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 4:39–45

    Article  CAS  PubMed  Google Scholar 

  10. Schwieger J, Fine LG (1990) Renal hypertrophy, growth factors, and nephropathy in diabetes mellitus. Semin Nephrol 10:242–253

    CAS  PubMed  Google Scholar 

  11. Al-Douahji M, Brugarolas J, Brown PA, Stehman-Breen CO, Alpers CE et al (1999) The cyclin kinase inhibitor p21waf1/CIP1 is required for glomerular hypertrophy in experimental diabetic nephropathy. Kidney Int 56:1691–1699

    Article  CAS  PubMed  Google Scholar 

  12. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M (1998) Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 339:69–75

    Article  CAS  PubMed  Google Scholar 

  13. Martens-Uzunova ES, Bottcher R, Croce CM, Jenster G, Visakorpi T et al (2014) Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol 65:1140–1151

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Li R, He J, Yang Q, Wu Y et al (2017) Co-expression analysis among micrornas, long non-coding rnas, and messenger rnas to understand the pathogenesis and progression of diabetic kidney disease at the genetic level. Methods 124:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li X, Zeng L, Cao C, Lu C, Lian W et al (2017) Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated mir-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res 350:327–335

    Article  CAS  PubMed  Google Scholar 

  16. Wang F (2019) lncrna TUG1 ameliorates diabetic nephropathy by inhibiting mir-21 to promote TIMP3-expression. Int J Clin Exp Pathol 12:717–729

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Duan LJ, Ding M, Hou LJ, Cui YT, Li CJ et al (2017) Long noncoding RNA TUG1 alleviates extracellular matrix accumulation via mediating microrna-377 targeting of ppargamma in diabetic nephropathy. Biochem Biophys Res Commun 484:598–604

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Zheng LL, Huang DG, Cao H, Gao YH et al (2020) LNCRNA CDKN2B-AS1 regulates mesangial cell proliferation and extracellular matrix accumulation via mir-424-5p/HMGA2 axis. Biomed Pharmacother 121:109622

    Article  CAS  PubMed  Google Scholar 

  19. Wang X, Xu Y, Zhu YC, Wang YK, Li J et al (2019) lncrna NEAT1 promotes extracellular matrix accumulation and epithelial-to-mesenchymal transition by targeting mir-27b-3p and ZEB1 in diabetic nephropathy. J Cell Physiol 234:12926–12933

    Article  CAS  PubMed  Google Scholar 

  20. Colognori D, Sunwoo H, Kriz AJ, Wang CY, Lee JT (2019) Xist deletional analysis reveals an interdependency between xist RNA and polycomb complexes for spreading along the inactive X. Mol Cell 74:101–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu C, Liu S, Han M, Wang Y, Xu C (2018) Knockdown of lncrna XIST inhibits retinoblastoma progression by modulating the mir-124/STAT3 axis. Biomed Pharmacother 107:547–554

    Article  CAS  PubMed  Google Scholar 

  22. Hu C, Bai X, Liu C, Hu Z (2019) Long noncoding RNA XIST participates hypoxia-induced angiogenesis in human brain microvascular endothelial cells through regulating mir-485/SOX7 axis. Microcirculation 11:6487

    CAS  Google Scholar 

  23. Lv GY, Miao J, Zhang XL (2018) Long noncoding RNA XIST promotes osteosarcoma progression by targeting ras-related protein RAP2B via mir-320b. Oncol Res 26:837–846

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yue D, Guanqun G, Jingxin L, Sen S, Shuang L et al (2019) Silencing of long noncoding RNA XIST attenuated Alzheimer’s disease-related BACE1 alteration through mir-124. Cell Biol Int 44:630–636

    Article  PubMed  CAS  Google Scholar 

  25. Zubiri I, Posada-Ayala M, Benito-Martin A, Maroto AS, Martin-Lorenzo M et al (2015) Kidney tissue proteomics reveals regucalcin downregulation in response to diabetic nephropathy with reflection in urinary exosomes. Transl Res 166:474–484

    Article  CAS  PubMed  Google Scholar 

  26. Fan W, Wen X, Zheng J, Wang K, Qiu H et al (2020) LINC00162 participates in the pathogenesis of diabetic nephropathy via modulating the mir-383/HDAC9 signalling pathway. Artifi Cells Nanomed Biotechnol 48:1047–1054

    Article  CAS  Google Scholar 

  27. Gordin D, Groop PH (2016) Aspects of hyperglycemia contribution to arterial stiffness and cardiovascular complications in patients with type 1 diabetes. J Diabetes Sci Technol 10:1059–1064

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qin T, Zhao H, Cui P, Albesher N, Xiong L (2017) A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiol 175:1321–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yi H, Peng R, Zhang LY, Sun Y, Peng HM et al (2017) lincrna-Gm4419 knockdown ameliorates NF-κb/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis 8:e2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang P, Sun Y, Peng R, Chen W, Fu X et al (2019) Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3. Cell Death Dis 10:526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kramer MF (2011) Stem-loop RT-qpcr for mirnas. Curr Protoc Mol. https://doi.org/10.1002/0471142727.mb1510s95

    Article  Google Scholar 

  32. Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M (2017) Two-tailed RT-qpcr: a novel method for highly accurate mirna quantification. Nucleic Acids Res 45:e144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 12:2032–2045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fan W, Peng Y, Liang Z, Yang Y, Zhang J (2019) A negative feedback loop of H19/mir-675/EGR1 is involved in diabetic nephropathy by downregulating the expression of the vitamin D receptor. J Cell Physiol 234:17505–17513

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Yu Z, Meng X, Yu P (2018) lncrna LINC00968 accelerates the proliferation and fibrosis of diabetic nephropathy by epigenetically repressing p21 via recruiting EZH2. Biochem Biophys Res Commun 504:499–504

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Sun Y, Peng R, Liu H, He W et al (2018) The long noncoding RNA 150Rik promotes mesangial cell proliferation via mir-451/IGF1R/p38 MAPK signaling in diabetic nephropathy. Cell Physiol Biochem 51:1410–1428

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Chang B, Zhang J, Wu X (2019) lncrna SOX2OT alleviates the high glucose-induced podocytes injury through autophagy induction by the mir-9/SIRT1 axis. Exp Mol Pathol 110:104283

    Article  CAS  PubMed  Google Scholar 

  38. Jindou Yang YS, Yang X, Long Y, Chen S, Lin X, Dong R, Jing Y (2019) Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microrna-93-5p-mediated inhibition of CDKN1A. Am J Physiol Renal Physiol 317:F1350–F1358

    Article  PubMed  CAS  Google Scholar 

  39. Binabaj MM, Soleimani A, Rahmani F, Avan A, Khazaei M et al (2019) Prognostic value of high mobility group protein A2 (HMGA2) over-expression in cancer progression. Gene 706:131–139

    Article  CAS  PubMed  Google Scholar 

  40. Kaur H, Ali SZ, Huey L, Hutt-Cabezas M, Taylor I et al (2016) The transcriptional modulator HMGA2 promotes stemness and tumorigenicity in glioblastoma. Cancer Lett 377:55–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu X et al (2014) Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging mir-331-3p in gastric cancer. Mol Cancer 13:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen Y, Liu X, Chen L, Chen W, Zhang Y et al (2018) The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting mir-330-3p. Biochem Biophys Res Commun 505:807–815

    Article  CAS  PubMed  Google Scholar 

  43. Feng Y, Wan P, Yin L (2020) Long noncoding RNA X-inactive specific transcript (XIST) promotes osteogenic differentiation of periodontal ligament stem cells by sponging microrna-214-3p. Med Sci Monit 26:e918932

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Brosius FC, Coward RJ (2014) Podocytes, signaling pathways, and vascular factors in diabetic kidney disease. Adv Chronic Kidney Dis 21:304–310

    Article  PubMed  PubMed Central  Google Scholar 

  45. Simpson K, Wonnacott A, Fraser DJ, Bowen T (2016) micrornas in diabetic nephropathy: from biomarkers to therapy. Curr Diab Rep 16:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Xu Y, Zhang J, Fan L, He X (2018) mir-423-5p suppresses high-glucose-induced podocyte injury by targeting Nox4. Biochem Biophys Res Commun 505:339–345

    Article  CAS  PubMed  Google Scholar 

  47. Ryan BM, Robles AI, Harris CC (2010) Genetic variation in microrna networks: the implications for cancer research. Nat Rev Cancer 10:389–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao H, Gao A, Zhang Z, Tian R, Luo A et al (2015) Genetic analysis and preliminary function study of mir-423 in breast cancer. Tumour Biol 36:4763–4771

    Article  CAS  PubMed  Google Scholar 

  49. Yang W, Wang J, Chen Z, Chen J, Meng Y et al (2017) NFE2 Induces mir-423-5p to promote gluconeogenesis and hyperglycemia by repressing the hepatic FAM3A-ATP-Akt pathway. Diabetes 66:1819–1832

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research was funded by China Health Promotion Foundation No. hxkt2018-8 and Basic research program of Jiangsu Province (Natural Science Foundation)—General research Projects No. BK2016323.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contribution to conception and design, acquisition of the data, or analysis and interpretation of the data; take part in drafting the article or revising it critically for important intellectual content; gave final approval of the revision to be published; and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Xingbo Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

The present study was approved by the ethical review committee of The First Affiliated Hospital of Soochow University. Written informed consent was obtained from all enrolled patients.

Patient consent for publication

Patients agree to participate in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2021_4250_MOESM1_ESM.tif

Supplementary file1 Fig. S1 The expression level of HMGA2 in DN tissues and normal tissues. IHC staining of HMGA2 protein in human DN tissues and normal tissues (brown staining indicated positive signal) (TIF 1749 KB)

11010_2021_4250_MOESM2_ESM.tif

Supplementary file2 Fig. S2 The effects of si-XIST or si-HMGA2 on XIST, HMGA2 and miRNAs expression. (A) Relative expression of XIST in HMCs and HK-2 cells transfected with si-NC, si-XIST-1, si-XIST-2 or si-XIST-3, respectively. (B) Relative expression of HMGA2 in HMCs and HK-2 cells transfected with si-NC, si-HMGA2-1, si-HMGA2-2 or si-HMGA2-3, respectively. (C,D) The expression levels of miR-362-3p, miR-142-5p, miR-455-3p, miR-27a-3p and miR-423-5p in HMCs and HK-2 cells transfected with si-NC or si-XIST. * P<0.05 (TIF 660 KB)

11010_2021_4250_MOESM3_ESM.tif

Supplementary file3 Fig. S3 The effect of XIST overexpression plasmids on HMGA2 expression. Cells were transfected with vector or XIST overexpression plasmids. And the expression of HMGA2 mRNA in HG-treated HK cells was detected. * P<0.05 (TIF 167 KB)

11010_2021_4250_MOESM4_ESM.tif

Supplementary file4 Fig. S4 The effect of miR-423-5p inhibitor on fibrosis in HG-treated HK cells. (A, B) Cells were transfected with inhibitor NC or miR-423-5p inhibitor. And the mRNA levels of fibronectin (FN) and collagen IV (CoII IV) in HG-treated HK cells were detected. * P<0.05 (TIF 280 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Guo, Y. & Cheng, X. Long non-cording RNA XIST promoted cell proliferation and suppressed apoptosis by miR-423-5p/HMGA2 axis in diabetic nephropathy. Mol Cell Biochem 476, 4517–4528 (2021). https://doi.org/10.1007/s11010-021-04250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04250-x

Keywords

Navigation