Skip to main content

Advertisement

Log in

Tanshinone I restrains osteosarcoma progression by regulating circ_0000376/miR-432-5p/BCL2 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) have been identified as important regulators in cancer progression. Nevertheless, little is known about the biological function of circ_0000376 in the progression of osteosarcoma (OS). Cell viability, colony formation ability, apoptosis, and motility were analyzed by Cell Counting Kit-8 assay, colony formation assay, flow cytometry, and transwell assays. Cellular glycolytic metabolism was analyzed using commercial kits. RT-qPCR and Western blot assay were performed to analyze RNA and protein expression in OS tissues and cells. Starbase software was used to establish circRNA–microRNA (miRNA)–messenger RNA linkage, and intermolecular interaction was verified by dual-luciferase reporter assay. Xenograft tumor assay was conducted to analyze the effects of Tanshinone I (Tan I) and circ_0000376 on xenograft tumor growth in vivo. Tan I treatment suppressed the viability, migration, invasion, and glycolysis and triggered the apoptosis of OS cells. Tan I treatment markedly down-regulated circ_0000376 expression in OS cells. The addition of circ_0000376 plasmid largely rescued the malignant behaviors of OS cells upon Tan I exposure. Circ_0000376 interacted with miR-432-5p in OS cells. Circ_0000376 overexpression-mediated protective effects in Tan I-induced OS cells were partly attenuated by the accumulation of miR-432-5p. miR-432-5p bound to the 3ʹ untranslated region (3ʹUTR) of B-cell leukemia/lymphoma 2 (BCL2) in OS cells. miR-432-5p interference-induced effects in Tan I-treated OS cells were partly overturned by the silence of BCL2. Circ_0000376 can act as miR-432-5p sponge to up-regulate BCL2 expression in OS cells. Circ_0000376 silencing contributed to the anti-tumor effect of Tan I on the growth of xenograft tumors in vivo. Tan I exerted an anti-tumor role in OS progression by targeting circ_0000376/miR-432-5p/BCL2 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Please contact the correspondence author for the data request.

References

  1. Kansara M, Thomas DM (2007) Molecular pathogenesis of osteosarcoma. DNA Cell Biol 26:1–18. https://doi.org/10.1089/dna.2006.0505

    Article  CAS  PubMed  Google Scholar 

  2. Ottaviani G, Jaffe N (2009) The epidemiology of osteosarcoma. Cancer Treat Res 152:3–13. https://doi.org/10.1007/978-1-4419-0284-9_1

    Article  PubMed  Google Scholar 

  3. Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G (2006) Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev 32:423–436. https://doi.org/10.1016/j.ctrv.2006.05.005

    Article  PubMed  Google Scholar 

  4. Krishnan K, Khanna C, Helman LJ (2005) The biology of metastases in pediatric sarcomas. Cancer J 11:306–313. https://doi.org/10.1097/00130404-200507000-00006

    Article  CAS  PubMed  Google Scholar 

  5. Meyers PA (2009) Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther 9:1035–1049. https://doi.org/10.1586/era.09.69

    Article  CAS  PubMed  Google Scholar 

  6. Zhou L, Zuo Z, Chow MS (2005) Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J Clin Pharmacol 45:1345–1359. https://doi.org/10.1177/0091270005282630

    Article  CAS  PubMed  Google Scholar 

  7. Cai Y, Zhang W, Chen Z, Shi Z, He C, Chen M (2016) Recent insights into the biological activities and drug delivery systems of tanshinones. Int J Nanomed 11:121–130. https://doi.org/10.2147/ijn.s84035

    Article  CAS  Google Scholar 

  8. Yan Y, Su W, Zeng S, Qian L, Chen X, Wei J, Chen N, Gong Z, Xu Z (2018) Effect and mechanism of tanshinone I on the radiosensitivity of lung cancer cells. Mol Pharm 15:4843–4853. https://doi.org/10.1021/acs.molpharmaceut.8b00489

    Article  CAS  PubMed  Google Scholar 

  9. Dun S, Gao L (2019) Tanshinone I attenuates proliferation and chemoresistance of cervical cancer in a KRAS-dependent manner. J Biochem Mol Toxicol 33:e22267. https://doi.org/10.1002/jbt.22267

    Article  CAS  PubMed  Google Scholar 

  10. Lu M, Wang C, Wang J (2016) Tanshinone I induces human colorectal cancer cell apoptosis: the potential roles of Aurora A-p53 and survivin-mediated signaling pathways. Int J Oncol 49:603–610. https://doi.org/10.3892/ijo.2016.3565

    Article  CAS  PubMed  Google Scholar 

  11. Wang W, Li J, Ding Z, Li Y, Wang J, Chen S, Miao J (2019) Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway. J Cell Mol Med 23:6454–6465. https://doi.org/10.1111/jcmm.14539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461. https://doi.org/10.1038/nbt.2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, Xu W, Zhang E, Wang J, Fang T, Hu J, Dong G, Yin R, Wang J, Xu L (2018) The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Cancer Res 78:2839–2851. https://doi.org/10.1158/0008-5472.can-17-2808

    Article  CAS  PubMed  Google Scholar 

  14. Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, Dong J, Khorshidi A, Yang BB (2017) A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ 24:1609–1620. https://doi.org/10.1038/cdd.2017.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abulizi R, Li B, Zhang CG (2019) Circ_0071662, a novel tumor biomarker, suppresses bladder cancer cell proliferation and invasion by sponging miR-146b-3p. Oncol Res. https://doi.org/10.3727/096504019x15740729375088

    Article  PubMed  Google Scholar 

  16. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227. https://doi.org/10.1146/annurev.pathol.4.110807.092222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vishnoi A, Rani S (2017) MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol 1509:1–10. https://doi.org/10.1007/978-1-4939-6524-3_1

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Lu C, Zhou Y, Zhang Z, Sun L (2018) Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis. Biochem Biophys Res Commun 502:358–363. https://doi.org/10.1016/j.bbrc.2018.05.166

    Article  CAS  PubMed  Google Scholar 

  19. Xu T, Lei T, Li SQ, Mai EH, Ding FH, Niu B (2020) DNAH17-AS1 promotes pancreatic carcinoma by increasing PPME1 expression via inhibition of miR-432-5p. World J Gastroenterol 26:1745–1757. https://doi.org/10.3748/wjg.v26.i15.1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656. https://doi.org/10.1038/nrc883

    Article  CAS  PubMed  Google Scholar 

  21. Sánchez-Beato M, Sánchez-Aguilera A, Piris MA (2003) Cell cycle deregulation in B-cell lymphomas. Blood 101:1220–1235. https://doi.org/10.1182/blood-2002-07-2009

    Article  CAS  PubMed  Google Scholar 

  22. Yu L, Zhou GQ, Li DC (2018) MiR-136 triggers apoptosis in human gastric cancer cells by targeting AEG-1 and BCL2. Eur Rev Med Pharmacol Sci 22:7251–7256. https://doi.org/10.26355/eurrev_201811_16259

    Article  CAS  PubMed  Google Scholar 

  23. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  24. Bi J, Liu H, Dong W, Xie W, He Q, Cai Z, Huang J, Lin T (2019) Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence. Mol Cancer 18:133. https://doi.org/10.1186/s12943-019-1060-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89:289–317. https://doi.org/10.1007/s00204-014-1448-7

    Article  CAS  PubMed  Google Scholar 

  26. Xia Z, Gu J, Ansley DM, Xia F, Yu J (2003) Antioxidant therapy with Salvia miltiorrhiza decreases plasma endothelin-1 and thromboxane B2 after cardiopulmonary bypass in patients with congenital heart disease. J Thorac Cardiovasc Surg 126:1404–1410. https://doi.org/10.1016/s0022-5223(03)00970-x

    Article  CAS  PubMed  Google Scholar 

  27. Fish JM, Welchons DR, Kim YS, Lee SH, Ho WK, Antzelevitch C (2006) Dimethyl lithospermate B, an extract of Danshen, suppresses arrhythmogenesis associated with the Brugada syndrome. Circulation 113:1393–1400. https://doi.org/10.1161/circulationaha.105.601690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang ST, Huang CC, Huang WL, Lin TK, Liao PL, Wang PW, Liou CW, Chuang JH (2017) Tanshinone IIA induces intrinsic apoptosis in osteosarcoma cells both in vivo and in vitro associated with mitochondrial dysfunction. Sci Rep 7:40382. https://doi.org/10.1038/srep40382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, Lyu J, Li F, Peng C, Krylov SN, Xie Y, Zhang Y, He C, Wu N, Zhang C, Sdiri M, Dong J, Ma J, Gao C, Hibberd S, Yang BB (2018) A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene 37:5829–5842. https://doi.org/10.1038/s41388-018-0369-y

    Article  CAS  PubMed  Google Scholar 

  30. Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q, Zhang W (2018) Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer 17:19. https://doi.org/10.1186/s12943-018-0771-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang F, Hu A, Li D, Wang J, Guo Y, Liu Y, Li H, Chen Y, Wang X, Huang K, Zheng L, Tong Q (2019) Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer 18:158. https://doi.org/10.1186/s12943-019-1094-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song YZ, Li JF (2018) Circular RNA hsa_circ_0001564 regulates osteosarcoma proliferation and apoptosis by acting miRNA sponge. Biochem Biophys Res Commun 495:2369–2375. https://doi.org/10.1016/j.bbrc.2017.12.050

    Article  CAS  PubMed  Google Scholar 

  33. Liu W, Zhang J, Zou C, Xie X, Wang Y, Wang B, Zhao Z, Tu J, Wang X, Li H, Shen J, Yin J (2017) Microarray expression profile and functional analysis of circular RNAs in osteosarcoma. Cell Physiol Biochem 43:969–985. https://doi.org/10.1159/000481650

    Article  CAS  PubMed  Google Scholar 

  34. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  35. Liang HF, Zhang XZ, Liu BG, Jia GT, Li WL (2017) Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am J Cancer Res 7:1566–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu H, Xue L, Song C, Liu F, Jiang T, Yang X (2018) Overexpression of circular RNA circ_001569 indicates poor prognosis in hepatocellular carcinoma and promotes cell growth and metastasis by sponging miR-411-5p and miR-432-5p. Biochem Biophys Res Commun 503:2659–2665. https://doi.org/10.1016/j.bbrc.2018.08.020

    Article  CAS  PubMed  Google Scholar 

  37. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63. https://doi.org/10.1038/nrm3722

    Article  CAS  PubMed  Google Scholar 

  38. Tam CS, Seymour JF, Roberts AW (2016) Progress in BCL2 inhibition for patients with chronic lymphocytic leukemia. Semin Oncol 43:274–279. https://doi.org/10.1053/j.seminoncol.2016.02.014

    Article  CAS  PubMed  Google Scholar 

  39. Liu M, Jia J, Wang X, Liu Y, Wang C, Fan R (2018) Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p. Cancer Biol Ther 19:391–399. https://doi.org/10.1080/15384047.2018.1423921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang D, Zhan M, Chen T, Chen W, Zhang Y, Xu S, Yan J, Huang Q, Wang J (2017) miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep 7:43109. https://doi.org/10.1038/srep43109

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

BY and KQ conceived and designed the experiments, participated in its design and coordination, and helped to draft and revise the manuscript. QZZJ, NH, and FW collected the samples and clinical data and performed the experiments and the statistical analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no financial conflicts of interest.

Ethical approval

All experimental procedures were in strict conformity to the guidelines on the use of laboratory animals and approved by China-Japan Union Hospital Jilin University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2021_4257_MOESM1_ESM.tif

Supplementary Fig. 1. Tan I treatment suppresses the viability and colony formation ability of OS cells. (A-F) We treated U2OS, MG63, and 143B cells with increased doses (0.08 μmol/L, 0.4 μmol/L or 2 μmol/L) of Tan I for 24 h. (A-C) Cell viability was measured by CCK8 assay. (D-F) Colony formation assay was used to assess the colony formation ability of Tan I-treated OS cells. *: P < 0.05. Supplementary file1 (TIF 2865 kb)

11010_2021_4257_MOESM2_ESM.tif

Supplementary Fig. 2. Tan I treatment reduces the expression of circ_0000376 in HOS, 143B, and ZOS cell lines. (A-C) RT-qPCR was conducted to analyze the expression of circ_0000376 in HOS, 143B, and ZOS cells treated with 2 μmol/L Tan I for 24 h. *: P < 0.05. Supplementary file2 (TIF 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, B., Qiao, K., Zhao, Q. et al. Tanshinone I restrains osteosarcoma progression by regulating circ_0000376/miR-432-5p/BCL2 axis. Mol Cell Biochem 477, 1–13 (2022). https://doi.org/10.1007/s11010-021-04257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04257-4

Keywords

Navigation