Skip to main content
Log in

Ultrasensitive colorimetric strategy for Hg2+ detection based on T-Hg2+-T configuration and target recycling amplification

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novelty aptasensor for ultrasensitive detection of Hg2+ is developed, exploiting the combination of plasmonic properties of gold nanoparticles (AuNPs) and exonuclease III (Exo III)-assisted target recycling for signal amplification. In the presence of Hg2+, a DNA duplex can be formed due to the strong coordination of Hg2+ and T bases of single-stranded DNA (ssDNA) probe. Exo III digests the DNA duplex from the 3′ to 5′ direction, resulting in the releasing of Hg2+. Then, the released Hg2+ binds with another ssDNA probe through T-Hg2+-T coordination. After Exo III-assisted Hg2+ cycles, numerous ssDNA probes are exhausted, which promotes poly(diallyldimethylammonium chloride) (PDDA)-induced AuNP aggregation, leading to an obvious color change and aggregation-induced plasmon red shift of AuNPs (from 520 to 610 nm). Therefore, this biosensor is ultrasensitive, which is applicable to the detection of trace level of Hg2+ with a linear range from 5 pM to 0.6 nM and an ultralow detection limit of 0.2 pM. Furthermore, it enables visual detection of Hg2+ as low as 50 pM by the naked eye. More importantly, the assay can be applied to the reliable determination of spiked Hg2+ in sea water samples with good recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yao L, Gao S, Liu S, Bi Y, Zheng L. Single-atom enzyme functionalized solution-gated graphene transistor for real-time detection of mercury ion. ACS Appl Mater Interfaces. 2020;12(5):6268–75.

    Article  CAS  PubMed  Google Scholar 

  2. Harris HH, Pickering IJ, George GN. The chemical form of mercury in fish. Science. 2003;301(5637):1203.

    Article  CAS  PubMed  Google Scholar 

  3. Wu H, Tong C. Dual-emission fluorescent probe for the simultaneous detection of nitrite and mercury (II) in environmental water samples based on the Tb3+-modified carbon quantum dot/3-aminophenylboronic acid hybrid. Anal Chem. 2020;92(13):8859–66.

    Article  CAS  PubMed  Google Scholar 

  4. Rahman GM, Wolle MM, Fahrenholz T, Kingston HS, Pamuku M. Measurement of mercury species in whole blood using speciated isotope dilution methodology integrated with microwave-enhanced solubilization and spike equilibration, headspace–solid-phase microextraction, and GC-ICP-MS analysis. Anal Chem. 2014;86(12):6130–7.

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Han C, Cheng H, Wang Y, Liu J, Xu Z, et al. Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry. J Chromatogr A. 2013;1314:86–93.

    Article  CAS  PubMed  Google Scholar 

  6. Gao Z, Ma X. Speciation analysis of mercury in water samples using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography. Anal Chim Acta. 2011;702(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  7. Yuan Y, Wu Y, Wang H, Tong Y, Sheng X, Sun Y, et al. Simultaneous enrichment and determination of cadmium and mercury ions using magnetic PAMAM dendrimers as the adsorbents for magnetic solid phase extraction coupled with high performance liquid chromatography. J Hazard Mater. 2020;386:121658.

    Article  CAS  PubMed  Google Scholar 

  8. Butler OT, Cairns W, Cook JM, Davidson CM. Atomic spectrometry update. Environmental analysis. J Anal At Spectrom. 2012;26:187–221.

    Article  Google Scholar 

  9. Martinis EM, Bertón P, Olsina RA, Altamirano JC, Wuilloud RG. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry. J Hazard Mater. 2009;167(1–3):475–81.

    Article  CAS  PubMed  Google Scholar 

  10. Song C, Zhang Y, Li X, Ouyang G, Cui J, Zhang L, et al. Morphology-maintaining synthesis of copper hydroxy phosphate@metal–organic framework composite for extraction and determination of trace mercury in rice. Food Chem. 2021;343:128508.

    Article  CAS  PubMed  Google Scholar 

  11. Ma Y, Geng F, Wang Y, Xu M, Shao C, Qu P, et al. Novel strategy to improve the sensing performances of split ATP aptamer based fluorescent indicator displacement assay through enhanced molecular recognition. Biosens Bioelectron. 2019;134:36–41.

    Article  CAS  PubMed  Google Scholar 

  12. Kolm C, Cervenka I, Aschl UJ, Baumann N, Jakwerth S, Krska R, et al. DNA aptamers against bacterial cells can be efficiently selected by a SELEX process using state-of-the art qPCR and ultra-deep sequencing. Sci Rep. 2020;10(1):20917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li H, Chang J, Gai P, Feng L. Label-free and ultrasensitive biomolecule detection based on aggregation induced emission fluorogen via target-triggered hemin/G-quadruplex-catalyzed oxidation reaction. ACS Appl Mater Interfaces. 2018;10(5):4561–8.

    Article  PubMed  Google Scholar 

  14. Wang X, Lv W, Wu J, Li H, Li F. In situ generated nanozyme-initiated cascade reaction for amplified surface plasmon resonance sensing. Chem Commun. 2020;56(33):4571–4.

    Article  CAS  Google Scholar 

  15. Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed Eng. 2004;43:4300–2.

    Article  CAS  Google Scholar 

  16. Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J Am Chem Soc. 2006;128(7):2172–3.

    Article  CAS  PubMed  Google Scholar 

  17. Tanaka Y, Oda S, Yamaguchi H, Kondo Y, Kojima C, Ono A. 15N-15N J-coupling across HgII: direct observation of HgII-mediated T-T base pairs in a DNA duplex. J Am Chem Soc. 2007;129(2):244–5.

    Article  CAS  PubMed  Google Scholar 

  18. Wang S, Lin B, Chen L, Li N, Xu J, Wang J, et al. Branch-migration based fluorescent probe for highly sensitive detection of mercury. Anal Chem. 2018;90(20):11764–9.

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Sun H, Ma X, Su R, Sun R, Yang C, et al. Label-free fluorescence “turn-on” strategy for mercury (II) detection based on the T-Hg2+-T configuration and the DNA-sensitized luminescence of terbium (III). Anal Chim Acta. 2020;1099:136–44.

    Article  CAS  PubMed  Google Scholar 

  20. Kong RM, Ma L, Han X, Ma C, Qu F, Xia L. Hg2+-mediated stabilization of G-triplex based molecular beacon for label-free fluorescence detection of Hg2+, reduced glutathione, and glutathione reductase activity. Spectrochim Acta A Mol Biomol Spectrosc. 2020;228:117855.

    Article  CAS  PubMed  Google Scholar 

  21. Hu PP, Liu N, Wu KY, Zhai LY, Xie BP, Sun B, et al. Successive and specific detection of Hg2+ and I by a DNA@MOF biosensor: experimental and simulation studies. Inorg Chem. 2018;57(14):8382–9.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Pan J, Shu C. A naked-eye colorimetric sensor for Hg2+ monitoring with cascade signal amplification based on target-induced conjunction of split DNAzyme fragments. Chem Commun. 2017;53(73):10224–7.

    Article  CAS  Google Scholar 

  23. Li X, Du Z, Lin S, Tian J, Tian H, Xu W. Exo III and TdT dependent isothermal amplification (ETDA) colorimetric biosensor for ultra-sensitive detection of Hg2+. Food Chem. 2020;316:126980.

    Article  Google Scholar 

  24. Memon AG, Zhou X, Liu J, Wang R, Liu L, Yu B, et al. Utilization of unmodified gold nanoparticles for label-free detection of mercury (II): insight into rational design of mercury-specific oligonucleotides. J Hazard Mater. 2017;321:417–23.

    Article  CAS  PubMed  Google Scholar 

  25. Xing Y, Zhu Q, Zhou X, Qi P. A gold nanoparticle-based colorimetric mercury(II) biosensor using a DNA probe with phosphorothioate RNA modification and exonuclease III-assisted signal amplification. Microchim Acta. 2020;187(4):1–8.

    Article  Google Scholar 

  26. Bala A, Górski Ł. Peptide nucleic acid as a selective recognition element for electrochemical determination of Hg2+. Bioelectrochemistry. 2017;119:189–95.

    Article  PubMed  Google Scholar 

  27. Xiong E, Wu L, Zhou J, Yu P, Zhang X, Chen J. A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure. Anal Chim Acta. 2015;853:242–8.

    Article  CAS  PubMed  Google Scholar 

  28. Ma N, Ren X, Wang H, Kuang X, Fan D, Wu D, et al. Ultrasensitive controlled release aptasensor using thymine-Hg2+-thymine mismatch as a molecular switch for Hg2+ detection. Anal Chem. 2020;92(20):14069–75.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Chang H, Hirata A, Wu H, Xue QK, Chen M. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions. ACS Nano. 2013;7(5):4595–600.

    Article  CAS  PubMed  Google Scholar 

  30. Liu CW, Hsieh YT, Huang CC, Lin ZH, Chang HT. Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem Commun. 2008;19:11764–9.

    Google Scholar 

  31. Memon AG, Xing Y, Zhou X, Wang R, Liu L, Zeng S, et al. Ultrasensitive colorimetric aptasensor for Hg2+ detection using Exo-III assisted target recycling amplification and unmodified AuNPs as indicators. J Hazard Mater. 2020;384:120948.

    Article  CAS  PubMed  Google Scholar 

  32. Song X, Wang Y, Liu S, Zhang X, Wang H, Wang J, et al. Colorimetric and visual mercury(II) assay based on target-induced cyclic enzymatic amplification, thymine-Hg(II)-thymine interaction, and aggregation of gold nanoparticles. Microchim Acta. 2019;186(2):1–7.

    Article  Google Scholar 

  33. Zhu Y, Cai Y, Zhu Y, Zheng L, Ding J, Quan Y, et al. Highly sensitive colorimetric sensor for Hg2+ detection based on cationic polymer/DNA interaction. Biosens Bioelectron. 2015;69:174–8.

    Article  CAS  PubMed  Google Scholar 

  34. Gu C, Kong X, Liu X, Gai P, Feng L. Enzymatic biofuel-cell-based self-powered biosensor integrated with DNA amplification strategy for ultrasensitive detection of single-nucleotide polymorphism. Anal Chem. 2019;91(13):8697–704.

    Article  CAS  PubMed  Google Scholar 

  35. Yu L, Wei L, Hui X, Hou C, Bai L, Wang W. Label-free detection of Hg2+ based on Hg2+-triggered toehold binding, exonuclease III assisted target recycling and hybridization chain reaction. Sensor Actuat B-Chem. 2017;248:411–8.

    Article  CAS  Google Scholar 

  36. Gan X, Zhao H, Chen S, Quan X. Electrochemical DNA sensor for specific detection of picomolar Hg(II) based on exonuclease III-assisted recycling signal amplification. Analyst. 2015;140(6):2029–36.

    Article  CAS  PubMed  Google Scholar 

  37. Liu S, Lin Y, Wang L, Liu T, Cheng C, Wei W, et al. Exonuclease III-aided autocatalytic DNA biosensing platform for immobilization-free and ultrasensitive electrochemical detection of nucleic acid and protein. Anal Chem. 2014;86(8):4008–15.

    Article  CAS  PubMed  Google Scholar 

  38. Zuo X, Xia F, Xiao Y, Plaxco KW. Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. J Am Chem Soc. 2010;132(6):1816–8.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Y, Gao XY, Wang H, Wang J, Zhou J, Zhao W, et al. Ultrasensitive detection of microRNA via a Au@Ag nanosnowman. Anal Chem. 2019;91(24):15988–92.

    Article  CAS  PubMed  Google Scholar 

  40. Feng Q, Qin L, Wang M, Wang P. Signal-on electrochemical detection of DNA methylation based on the target-induced conformational change of a DNA probe and exonuclease III-assisted target recycling. Biosens Bioelectron. 2020;149:111847.

    Article  CAS  PubMed  Google Scholar 

  41. Song X, Yu W, Su L, Xue Z, Wang H, Wang J, et al. Ultrasensitive electrochemical detection of Hg2+ based on an Hg2+-triggered exonuclease III-assisted target recycling strategy. Analyst. 2018;143(23):4008–15.

    Article  Google Scholar 

  42. Sang F, Yin S, Pan J, Liu D, Zhang Z. Colorimetric determination of DNA using an aptamer and plasmonic nanoplatform. Microchim Acta. 2020;187(7):1–7.

    Article  Google Scholar 

  43. Sang F, Zhang X, Liu J, Yin S, Zhang Z. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2019;217:122–7.

    Article  CAS  PubMed  Google Scholar 

  44. Sang F, Liu J, Zhang X, Pan J. An aptamer-based colorimetric Pt (II) assay based on the use of gold nanoparticles and a cationic polymer. Microchim Acta. 2018;185(5):1–8.

    Article  CAS  Google Scholar 

  45. Zhang Y, Xiao JY, Zhu Y, Tian LJ, Wang WK, Zhu TT, et al. A fluorescence sensor based on biosynthetic CdSe/CdS quantum dots and liposome carrier signal amplification for mercury detection. Anal Chem. 2020;92(5):3990–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Natural Science Foundation of China (NSFC) (No. 21407035), Shandong Provincial Natural Science Foundation (ZR2014BM021), Technology and Development Program of Weihai (2014DXGJ15), and HIT-NSRIF (2011101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuming Sang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, F., Yin, S., Pan, J. et al. Ultrasensitive colorimetric strategy for Hg2+ detection based on T-Hg2+-T configuration and target recycling amplification. Anal Bioanal Chem 413, 7001–7007 (2021). https://doi.org/10.1007/s00216-021-03657-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03657-1

Keywords

Navigation