Skip to main content

Advertisement

Log in

Effect of Temperature on the Electrochemical Corrosion Behavior of X80 Steel in Silty Soil Containing Sodium Chloride

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The corrosion behavior of X80 pipeline steel in silty soil containing chloride ions at different temperatures was investigated using different electrochemical techniques. Scanning electron microscopy and energy-dispersive spectroscopy were used to characterize the corrosion morphology and physicochemical properties of the X80 steel. The lower chloride ion concentration and the ambient temperature were associated with the lower the unfrozen water content in the soil and the easier it to form an anoxic corrosion environment. As the chloride ion concentration increased, the corrosion rate increased at − 10 °C and first increased and then decreased at − 20 °C. The steel corroded surface were present irregular elliptical uncorroded areas in a soil environment at the sub-zero temperature, which may be caused by the liquid–solid phase transition hindering the transportation of the reducing medium. The rust layers in a positive temperature soil environment were present relatively dry. This phenomenon is due to the current density is high, and the exothermic process is evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W. Wu, Y. Li, G.X. Cheng, H. Zhang and J. Kang, Dynamic Safety Assessment of Oil and Gas Pipeline Containing Internal Corrosion Defect using Probability Theory and Possibility Theory, Eng. Fail. Anal., 2019, 98, p 156–166.

    Article  Google Scholar 

  2. R. Pourazizi, M.A. Mohtadi-Bonab and J.A. Szpunar, Role of Texture and Inclusions on the Failure of An API X70 Pipeline Steel at Different Service Environments, Mater. Charact., 2020, 164, p 110330.

    Article  CAS  Google Scholar 

  3. M.E.A. Ben Seghier, B. Keshtegar, M. Taleb-Berrouane, R. Abbassi and N.T. Trung, Advanced Intelligence Frameworks for Predicting Maximum Pitting Corrosion Depth in Oil and Gas Pipelines, Process Saf. Environ. Prot., 2021, 147, p 818–833.

    Article  CAS  Google Scholar 

  4. T.Y. Wang, D.Y. Xu, L.N. Qu, J.W. Fu and Z.L. Li, An Extension Approach to Estimate Soil Corrosivity for Buried Pipelines, Int. J. Press. Ves. Pip., 2021, 192, p 104413.

    Article  CAS  Google Scholar 

  5. Y.M. Su, F. Xie and D. Wang, Synergistic Effect of Factors Influencing the External Corrosion of Heavy Oil Pipelines in Reed Pond Soil, J. Mater. Eng. Perform., 2021, 30(5), p 3556–3567.

    Article  CAS  Google Scholar 

  6. S.X. Wang, X.L. Yin, H. Zhang, D.X. Liu and N. Du, Coupling Effects of pH and Dissolved Oxygen on the Corrosion Behavior and Mechanism of X80 Steel in Acidic Soil Simulated Solution, Materials (Basel), 2019, 12(19), p 3175.

    Article  CAS  Google Scholar 

  7. J. Eid, H. Takenouti, B. Ait Saadi and S. Taibi, Electrochemical Studies of Steel Rebar Corrosion in Clay: Application to a Raw Earth Concrete, Corros. Sci., 2020, 168, p 108556.

    Article  CAS  Google Scholar 

  8. J.S. Li, Y.F. Zhou, Q.M. Wang, Q. Xue and C.S. Poon, Development of a Novel Binder using Lime and Incinerated Sewage Sludge Ash to Stabilise/Solidify Contaminated Marine Sediments with High Water Content as a Fill Material, J. Mater. Civ. Eng., 2019, 31(10), p 04019245.

    Article  CAS  Google Scholar 

  9. H.W. Liu, Y.N. Dai and Y.F. Cheng, Corrosion of Underground Pipelines in Clay Soil with Varied Soil Layer Thicknesses and Aerations, Arab. J. Chem., 2020, 13(2), p 3601–3614.

    Article  CAS  Google Scholar 

  10. Q.Y. Qin, B.X. Wei, Y.L. Bai, Q. Fu, J. Xu, C. Sun, C. Wang and Z.Y. Wang, Effect of Alternating Current Frequency on Corrosion Behavior of X80 Pipeline Steel in Coastal Saline Soil, Eng. Fail. Anal., 2021, 120, p 105065.

    Article  CAS  Google Scholar 

  11. B. Liu, M.H. Sun, F.Y. Lu, C.W. Du and X.G. Li, Study of Biofilm-Influenced Corrosion on X80 Pipeline Steel by a Nitrate-Reducing Bacterium, Bacillus Cereus, in Artificial Beijing Soil, Colloids Surfaces B Biointerfaces., 2021, 197, p 111356.

    Article  CAS  Google Scholar 

  12. Y. Huang, D. Xu, L.Y. Huang, Y.T. Lou, J.B. Muhadesi, H.C. Qian, E.Z. Zhou, B.J. Wang, X.T. Li, Z. Jiang, S.J. Liu, D.W. Zhang and C.Y. Jiang, Responses of Soil Microbiome to Steel Corrosion, NPJ Biofilms Microbiomes, 2021, 7(1), p 6.

    Article  CAS  Google Scholar 

  13. X.H. Wang, Z.Q. Wang, Y.C. Chen, X.T. Song and C. Xu, Research on the Corrosion Behavior of X70 Pipeline Steel under Coupling Effect of AC + DC and Stress, J. Mater. Eng. Perform., 2019, 28(2), p 1958–1968.

    Article  CAS  Google Scholar 

  14. S. Karthick, S. Muralidharan and V. Saraswathy, Corrosion Performance of Mild Steel and Galvanized Iron in Clay Soil Environment, Arab. J. Chem., 2020, 13(1), p 3301–3318.

    Article  CAS  Google Scholar 

  15. Q.K. Zhang, S.L. Larson, J.H. Ballard, X.C. Zhu, H.M. Knotek-Smith and F.X. Han, Uranium Metal Corrosion in Soils with Different Soil Moisture Regimes, Corros. Sci., 2021, 179, p 109138.

    Article  CAS  Google Scholar 

  16. Q. Fu, J. Xu, B.X. Wei, Q.Y. Qin, L.Q. Gao, Y.L. Bai, C.K. Yu and C. Sun, The Effect of Nitrate Reducing Bacteria on the Corrosion Behavior of X80 Pipeline Steel in the Soil Extract Solution of Shenyang, Int. J. Press. Vessel. Pip., 2021, 190, p 104313.

    Article  CAS  Google Scholar 

  17. M. Wasim, S. Shoaib, N.M. Mubarak and A.M. Asiri, Factors Influencing Corrosion of Metal Pipes in Soils, Environ. Chem. Lett., 2018, 16(3), p 861–879.

    Article  CAS  Google Scholar 

  18. B.X. Wei, J. Xu, Q. Fu, Q.Y. Qin, Y.L. Bai, C. Sun, C. Wang, Z.Y. Wang and W. Ke, Effect of Sulfate-Reducing Bacteria on Corrosion of X80 Pipeline Steel under Disbonded Coating in a Red Soil Solution, J. Mater. Sci. Technol., 2021, 87, p 1–17.

    Article  Google Scholar 

  19. Q.L. Zhang, M.H. Xue, D. Wang, Y. Zi and J. Zhou, Effect of CO32- Concentration on the Corrosion Behavior of X80 Pipeline Steel in Simulated Soil Solution, Int. J. Electrochem. Sci., 2020, 15, p 4592–4601.

    Article  CAS  Google Scholar 

  20. Y.H. Wu, S.X. Luo and Q.S. Mou, Influence of Temperature on the Corrosion Behavior of X80 Steel in an Acidic Soil Environment, Int. J. Electrochem. Sci., 2020, 15, p 576–586.

    Article  CAS  Google Scholar 

  21. Minimum temperature data in Taiyuan City, Shanxi Province, China. China Meteorological Data Service Centre, http://data.cma.cn. Accessed 5 Mar 2021 (2021)

  22. Standard for engineering classification of soil, GB/T 50145-2007, p 6–7. N. H. R. Institute, China Planning Press, Beijing, (2008). (in Chinese)

  23. J. Qiu, Y.H. Li, Y. Xu, A.J. Wu and D.D. Macdonald, Effect of Temperature on Corrosion of Carbon Steel in Simulated Concrete Pore Solution under Anoxic Conditions, Corros. Sci., 2020, 175, p 108886.

    Article  CAS  Google Scholar 

  24. M.C. Yan, C. Sun, J.H. Dong, J. Xu and W. Ke, Electrochemical Investigation on Steel Corrosion in Iron-Rich Clay, Corros. Sci., 2015, 97, p 62–73.

    Article  CAS  Google Scholar 

  25. L.M. Quej-Ake, A. Contreras, H.B. Liu, J.L. Alamilla and E. Sosa, Assessment on External Corrosion Rates for API Pipeline Steels Exposed to Acidic Sand-Clay Soil, Anti-Corros. Methods Mater., 2018, 65(3), p 281–291.

    Article  CAS  Google Scholar 

  26. N. Sato, A Theory for Breakdown of Anodic Oxide Films on Metals, Electrochim. Acta., 1971, 16, p 1683–1692.

    Article  CAS  Google Scholar 

  27. Y.G. Chen, L.N. Liu, W.M. Ye, Y.J. Cui and D.B. Wu, Deterioration of Swelling Pressure of Compacted Gaomiaozi Bentonite Induced by Heat Combined with Hyperalkaline Conditions, Soils Found., 2019, 59(6), p 2254–2264.

    Article  Google Scholar 

  28. Y.G. Chen, X.X. Dong, X.D. Zhang, W.M. Ye and Y.J. Cui, Cyclic Thermal and Saline Effects on the Swelling Pressure of Densely Compacted Gaomiaozi Bentonite, Eng. Geol., 2019, 255, p 37–47.

    Article  Google Scholar 

  29. T. Kosec, Z. Qin, J. Chen, A. Legat and D.W. Shoesmith, Copper Corrosion in Bentonite/Saline Groundwater Solution: Effects of Solution and Bentonite Chemistry, Corros. Sci., 2015, 90, p 248–258.

    Article  CAS  Google Scholar 

  30. D. Ding, Y. Zhang, X.B. Yu, B.L. Fang, J.P. Guo, J. Li, L. Liu, C.W. Du and Z. Liu, Effects of Environmental Factors on Corrosion Behavior of High-Silicon Cast Iron in Shanxi Soil Medium, Anti-Corros. Methods Mater., 2018, 65(5), p 538–546.

    Article  CAS  Google Scholar 

  31. H.C. Ma, B. Zhao, Z.Y. Liu, C.W. Du and B.A. Shou, Local Chemistry–Electrochemistry and Stress Corrosion Susceptibility of X80 Steel Below Disbonded Coating in Acidic Soil Environment under Cathodic Protection, Constr. Build. Mater., 2020, 243, p 118203.

    Article  CAS  Google Scholar 

  32. F.N. Sun, R.Z. Xie, B. He, Z.W. Chen, X.L. Bai and P.J. Han, The Initial Stage Corrosion of X80 Steel in Saturated Sandy Soil Containing Cl- and SO42-, Int. J. Electrochem. Sci., 2021, 16, p 150878.

    Article  CAS  Google Scholar 

  33. Z.M. You, Y.M. Lai, H.Y. Zeng and Y.H. Yang, Influence of Water and Sodium Chloride Content on Corrosion Behavior of Cast Iron In Silty Clay, Constr. Build. Mater., 2020, 238, p 117762.

    Article  CAS  Google Scholar 

  34. B. He, C.H. Lu, P.J. Han and X.H. Bai, Short-Term Electrochemical Corrosion Behavior of Pipeline Steel in Saline Sandy Environments, Eng. Fail. Anal., 2016, 59, p 410–418.

    Article  CAS  Google Scholar 

  35. Z.C. Xu, Y.X. Du, R.Z. Qin and H. Zhang, Study of Corrosion Behavior of X80 Steel in Clay Soil with Different Water Contents Under HVDC Interference, Int. J. Electrochem. Sci., 2020, 15, p 3935–3954.

    Article  CAS  Google Scholar 

  36. L.M. Kong, Y.S. Wang, W.J. Sun and J.L. Qi, Influence of Plasticity on Unfrozen Water Content of Frozen Soils as Determined by Nuclear Magnetic Resonance, Cold Reg. Sci. Technol., 2020, 172, p 102993.

    Article  Google Scholar 

  37. M.Y. Zhang, X.Y. Zhang, J.G. Lu, W.S. Pei and C. Wang, Analysis of Volumetric Unfrozen Water Contents in Freezing Soils, Exp. Heat Transf., 2019, 32(5), p 426–438.

    Article  Google Scholar 

  38. G.J. Hu, L. Zhao, X.F. Zhu, X.D. Wu, T.H. Wu, R. Li, C.W. Xie and J.M. Hao, Review of Algorithms and Parameterizations to Determine Unfrozen Water Content in Frozen Soil, Geoderma, 2020, 368, p 114277.

    Article  Google Scholar 

  39. J. Zhang, Y.M. Lai, J.F. Li and Y.H. Zhao, Study on the Influence of Hydro-Thermal-Salt-Mechanical Interaction in Saturated Frozen Sulfate Saline Soil Based on Crystallization Kinetics, Int. J. Heat Mass Tran., 2020, 146, p 118868.

    Article  CAS  Google Scholar 

  40. Z.A. Xiao, Z.R. Hou, L.Z. Zhu and X.Q. Dong, Experimental investigation of the influence of salt on the phase transition temperature in saline soil, Cold Reg. Sci. Technol., 2021, 183, p 103229.

    Article  Google Scholar 

  41. J.P. Liu, P. Yang and Z. JoeyYang, Electrical Properties of Frozen Saline Clay and Their Relationship with Unfrozen Water Content, Cold Reg. Sci. Technol., 2020, 178, p 103127.

    Article  Google Scholar 

  42. J.P. Liu, P. Yang, L. Li and T. Zhang, Characterizing Pore-Size Distribution of a Chloride Silt Soil During Freeze-Thaw Process Using Nuclear Magnetic Resonance Relaxometry, Soil Sci. Soc. Am. J., 2020, 84(5), p 1577–1591.

    Article  CAS  Google Scholar 

  43. Y. Zhang, Z.H. Yang, J.K. Liu and J.H. Fang, Impact of Cooling on Shear Strength of High Salinity Soils, Cold Reg. Sci. Technol., 2017, 141, p 122–130.

    Article  Google Scholar 

  44. J.D. Teng, J.Y. Kou, X.D. Yan, S. Zhang and D.C. Sheng, Parameterization of Soil Freezing Characteristic Curve for Unsaturated Soils, Cold Reg. Sci. Technol., 2020, 170, p 102928.

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 41807256), the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (No. Z017003), the Ph.D research launch project of Jinzhong University, the Scientific and technological innovation projects of colleges and universities in Shanxi Province, and the Opening Project of Sichuan University of Science and Engineering, Material Corrosion and Protection Key Laboratory of Sichuan province (No. 2020CL13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengju Han.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., He, B., Han, P. et al. Effect of Temperature on the Electrochemical Corrosion Behavior of X80 Steel in Silty Soil Containing Sodium Chloride. J. of Materi Eng and Perform 31, 968–983 (2022). https://doi.org/10.1007/s11665-021-06245-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06245-7

Keywords

Navigation