Skip to main content
Log in

Fatigue Life Prediction of Steel Pipelines Based on X-ray Diffraction Analyses

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Pipelines are the most used and safest equipment to transport oil and its liquid or gaseous derivatives. Steel pipes are usually manufactured of API 5L X60, X65, X70 or X80 grade steels. x-ray diffraction technique was used to evaluate the microstructural behavior of API X65 steel samples through the analysis of the full width at half maximum (FWHM) values of the diffraction peak during the fatigue damage process. Based on the obtained results, it was possible to identify three stages of fatigue damage. Stage I is associated with crack nucleation, and a deeper understanding of this stage is one of the most relevant goals of this study. Stage II of microcracking is the longest stage, representing most of the fatigue life of the material. Stage III is related to macrocracking, when the material is already structurally harmed and driven to abrupt failure, leaving the operator with little time to act and prevent it. Another important result observed was that the major changes in the FWHM values occurred around 21% of the fatigue life of the material. This point was taken as a critical point and used as a reference to calculate the number of cycles up to the failure of the material. The results obtained show that the x-ray technique can be used to study the beginning of the fatigue life of metallic material with reliably once the FWHM results were compared with earlier indentation results that showed the same trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.P. Drumond, I.P. Pasqualino, B.C. Pinheiro and S.F. Estefen, Pipelines, Risers and Umbilicals Failures: A Literature Review, Ocean Eng., 2018, 148, p 412–425.

    Article  Google Scholar 

  2. B.C. Pinheiro, J. Lesage, I.P. Pasqualino, N. Benseddiq and E. Bemporad, x-ray Diffraction Study of Microstructural Changes During Fatigue Damage Initiation in Steel Pipes, Mater. Sci. Eng., A, 2012, 532, p 158–166.

    Article  CAS  Google Scholar 

  3. B.C. Pinheiro, J. Lesage, I.P. Pasqualino, E. Bemporad and N. Benseddiq, x-ray Diffraction Study of Microstructural Changes During Fatigue Damage Initiation in Pipe Steels: Role of the Initial Dislocation Structure, Mater. Sci. Eng., A, 2013, 580, p 1–12.

    Article  CAS  Google Scholar 

  4. E. Malitckii, H. Remes, P. Lehto, Y. Yagodzinskyy, S. Bossuyt and H. Hänninen, Strain Accumulation During Microstructurally Small Fatigue Crack Propagation in bcc Fe-Cr Ferritic Stainless Steel, Acta Mater., 2018, 144, p 51–59.

    Article  CAS  Google Scholar 

  5. B. Tomkins and W.D. Biggs, Low Endurance Fatigue in Metals and Polymers, J. Mater. Sci., 1969, 4(6), p 544–553.

    Article  CAS  Google Scholar 

  6. P. Peralta and C. Laird, Fatigue Fracture at Bicrystal Interfaces: Experiment and Theory, Acta Mater., 1998, 46(6), p 2001–2020.

    Article  CAS  Google Scholar 

  7. H. Vehoff and P. Neumann, In situ SEM Experiments Concerning the Mechanism of Ductile Crack Growth, Acta Metall., 1979, 27(5), p 915–920.

    Article  CAS  Google Scholar 

  8. P. Neumann, The Geometry of Slip Processes at a Propagating Fatigue Crack-II, Acta Metall., 1974, 22(9), p 1167–1178.

    Article  Google Scholar 

  9. P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, J. Basic Eng., 1963, 85(4), p 528–533.

    Article  CAS  Google Scholar 

  10. Bjerkén, C., & Melin, S. (2008). Influence of low-angle boundaries on short fatigue cracks studied by a discrete dislocation method. In 17th European Conference on Fracture (pp. 257-264)

  11. C. Bjerkén and S. Melin, Growth of a Short Fatigue Crack–A Long Term Simulation Using a Dislocation Technique, Int. J. Solids Struct., 2009, 46(5), p 1196–1204.

    Article  Google Scholar 

  12. H. Andersson and C. Persson, In-situ SEM Study of Fatigue Crack Growth Behaviour in IN718, Int. J. Fatigue, 2004, 26(3), p 211–219.

    Article  CAS  Google Scholar 

  13. M. Jono, A. Sugeta and Y. Uematsu, Atomic Force Microscopy and the Mechanism of Fatigue Crack Growth, Fatigue Fract. Eng. Mater. Struct., 2001, 24(12), p 831–842.

    Article  CAS  Google Scholar 

  14. D.Y. Ye, D.J. Wang and P. An, Characteristics of the Change in the Surface Microhardness During High Cycle Fatigue Damage, Mater. Chem. Phys., 1996, 44(2), p 179–181.

    Article  CAS  Google Scholar 

  15. D. Ye, X. Tong, L. Yao and X. Yin, Fatigue Hardening/softening Behavior Investigated Through Vickers Microhardness Measurement During High- Cycle Fatigue, Mater. Chem. Phys., 1998, 56(3), p 199–204.

    Article  CAS  Google Scholar 

  16. G. Drumond, F. Roudet, D. Chicot, B. Pinheiro and I. Pasqualino, A Damage Criterion to Predict the Fatigue Life of Steel Pipelines Based on Indentation Measurements, Journal of Offshore Mechanics and Arctic Engineering, 2020, 143(1), p 011701.

    Article  Google Scholar 

  17. Pinheiro, B.C. (2011). Étude par Diffraction des Rayons X des Modifications Microstructurales em Cours de Fatigue, Thèse de Doctorat, Université Lille 1 - Sciences et Technologies, Lille, France.

  18. Pinheiro, B., Lesage, J., Pasqualino, I., Benseddiq, N., & Bemporad, E. (2015, May). Toward a Fatigue Life Assessment of Steel Pipes Based on x-ray Diffraction Measurements. In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering (pp. V05BT04A027-V05BT04A027). American Society of Mechanical Engineers.

  19. Q.S. Paduano, D.W. Weyburne and A.J. Drehman, An x-ray diffraction technique for analyzing structural defects including microstrain in nitride materials, J. Cryst. Growth, 2011, 318(1), p 418–422.

    Article  CAS  Google Scholar 

  20. P.B. Hirsch and J.N. Kellar, A Study of Cold-worked Aluminum by an x-ray Microbeam Technique. I. Measurement of Particle Volume and Misorientations, Acta Crystallographica, 1952, 5(2), p 162–167.

    Article  CAS  Google Scholar 

  21. S. Taira and K. Honda, x-ray Investigation on the Fatigue Damage of Metals, Bulletin of JSME, 1961, 4(14), p 230–237.

    Article  Google Scholar 

  22. Taira, S., Tanaka, K., & Tanabe, T. (1970). Study of tensile deformation of low-carbon steel by x-ray microbeam technique. Proc. 13th Jap. Congr. Mater. Res, 14-9.

  23. S. Taira and T. Keisuke, Study of Fatigue Crack Propagation by x-ray Diffraction Approach, Eng. Fract. Mech., 1972, 4(4), p 925–938.

    Article  CAS  Google Scholar 

  24. Bragg, W. H., & Bragg, W. L. (1913). The reflection of x-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88(605), 428-438.

  25. P.S. Prevéy, Problems with Non-Destructive Surface x-ray Diffraction Residual Stress Measurement, Shot Peener, The, 1992, 5(4), p 5–11.

    Google Scholar 

  26. S. Djaziri, D. Thiaudière, G. Geandier, P.O. Renault, E. Le Bourhis, P. Goudeau and D. Faurie, Controlled Biaxial Deformation of Nanostructured W/Cu Thin Films Studied by x-ray Diffraction, Surf. Coat. Technol., 2010, 205(5), p 1420–1425.

    Article  CAS  Google Scholar 

  27. Hecker, M. (2006, February). Stresses in Laterally Structured Copper Layer Systems Studied by x‐ray Diffraction. In AIP Conference Proceedings (Vol. 817, No. 1, pp. 296-302). AIP.

  28. Manns, T., Gibmeier, J., & Scholtes, B. (2006). Determination of Real Space Residual Stress Distributions σij (z) of Surface Treated Materials with Diffraction Methods Part I: Angle-Dispersive Approach. In Materials science forum (Vol. 524, pp. 31-36). Trans Tech Publications.

  29. C. Genzel, x-ray Stress Analysis in Presence of Gradients and Texture, Adv. x-ray Anal., 2001, 44, p 247.

    CAS  Google Scholar 

  30. Q. Luo and A.H. Jones, High-precision Determination of Residual Stress of Polycrystalline Coatings using Optimized XRD-sin2ψ Technique, Surf. Coat. Technol., 2010, 205(5), p 1403–1408.

    Article  CAS  Google Scholar 

  31. G.C.A.M. Janssen, Stress and Strain in Polycrystalline Thin Films, Thin Solid Films, 2007, 515(17), p 6654–6664.

    Article  CAS  Google Scholar 

  32. P. Scardi, P. Polonioli and S. Ferrari, Residual Stress in Stabilized Zirconia Thin Films Prepared by rf Magnetron Sputtering, Thin Solid Films, 1994, 253(1–2), p 349–355.

    Article  CAS  Google Scholar 

  33. V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer and D. Stöver, Effects of Deposition Temperature and Thermal Cycling on Residual Stress State in Zirconia-Based Thermal Barrier Coatings, Surf. Coat. Technol., 1999, 120, p 103–111.

    Article  Google Scholar 

  34. B.E. Warren and B.L. Averbach, The Separation of Cold-Work Distortion and Particle Size Broadening in x-ray Patterns, J. Appl. Phys., 1952, 23(4), p 497–497.

    Article  CAS  Google Scholar 

  35. B.E. Warren and B.L. Averbach, The Separation of Stacking Fault Broadening in Cold-Worked Metals, J. Appl. Phys., 1952, 23(9), p 1059–1059.

    Article  CAS  Google Scholar 

  36. G.K. Williamson and W.H. Hall, x-ray Line Broadening from Filed Aluminum and Wolfram, Acta Metall., 1953, 1(1), p 22–31.

    Article  CAS  Google Scholar 

  37. I. Groma, x-ray Line Broadening Due to an Inhomogeneous Dislocation Distribution, Phys. Rev. B, 1998, 57(13), p 7535.

    Article  CAS  Google Scholar 

  38. L.V. Azaroff, Elements of x-ray Crystallography, Mc Graw-Hill, New York, 1968, p 549–558

    Google Scholar 

  39. B.E. Warren, x-ray Diffraction, Dover Publications, New York, 1990, p 251–252

    Google Scholar 

  40. Y. Akiniwa, S. Machiya and K. Tanaka, Fatigue Damage Evaluation in SiCp/2024 by x-ray Diffraction Method, Int. J. Fatigue, 2006, 28(10), p 1406–1412.

    Article  CAS  Google Scholar 

  41. Y. Akiniwa, S. Machiya, H. Kimura, K. Tanaka, N. Minakawa, Y. Morii and T. Kamiyama, Evaluation of Material Properties of SiC Particle Reinforced Aluminum Alloy Composite Using Neutron and x-ray Diffraction, Mater. Sci. Eng., A, 2006, 437(1), p 93–99.

    Article  Google Scholar 

  42. Fourspring, P. M., & Pangborn, R. N. (1997). An x-ray Diffraction Study of Microstructural Deformation Induced by Cyclic Loading of Steels. In Fatigue and Fracture Mechanics: 28th Volume. ASTM International.

  43. A. Olchini, H. Stamm and F.D.S. Marques, Fatigue Damage Monitoring of Laser Surface Treated Steel by x-ray Diffraction Methods, Surf. Eng., 1998, 14(5), p 386–390.

    Article  CAS  Google Scholar 

  44. R.N. Pangborn, S. Weissmann and I.R. Kramer, Prediction of Fatigue Life by x-ray Diffraction Methods, Fatigue Fract. Eng. Mater. Struct., 1979, 1(3), p 363–369.

    Article  CAS  Google Scholar 

  45. K. Vijayan, A. Mani, C. Balasingh and A.K. Singh, x-ray Analysis of Polycrystalline Aluminum Subjected to Fatigue Cycling, Bull. Mater. Sci., 1988, 10(3), p 205–216.

    Article  CAS  Google Scholar 

  46. H.K. Kuo and J.B. Cohen, Changes in Residual Stress, Domain Size and Microstrain During the Fatigue of AISI 1008 Steel, Mater. Sci. Eng., 1983, 61(2), p 127–136.

    Article  CAS  Google Scholar 

  47. R.N. Pangborn, S. Weissmann and I.R. Kramer, Dislocation Distribution and Prediction of Fatigue Damage, Metall. Trans. A, 1981, 12(1), p 109–120.

    Article  CAS  Google Scholar 

  48. R.A. Winholtz and J.B. Cohen, Changes in the Macrostresses and Microstresses in Steel with Fatigue, Mater. Sci. Eng., A, 1992, 154(2), p 155–163.

    Article  Google Scholar 

  49. K. Tanaka, Recent x-ray Diffraction Studies of Metal Fatigue in Japan, Journal of Strain Analysis, 1975, 10(1), p 32–41.

    Article  Google Scholar 

  50. J. Lesage, D. Chicot, P. Perez and J.M. Chatelet, x-ray Diffraction Study of Microstructural Modifications During Fatigue, Euromat, 1994, 94(2), p 616–620.

    Google Scholar 

  51. A.P.I. Spec, 5L: Specification for Line Pipe, American Petroleum Institute, 2012, 4, p 14577–14581.

    Google Scholar 

  52. Standard, A. S. T. M. (2004). E8M-04. Stand Test Methods Tens Test Met Mater West Conshohocken ASTM Int.

  53. Laird, C. (1967). ASTM STP 415. In American Society for Testing and Materials (pp. 131-169).

  54. M.D. Abràmoff, P.J. Magalhães and S.J. Ram, Image processing with ImageJ, Biophoton. Int, 2004, 11(7), p 36–42.

    Google Scholar 

  55. Schenck, C., Wechselbiegemaschine PWON, Maschinenfabrik GmbH, Darmstadt, Germany, 1971.

  56. DIN, E. (1982). 50142. Testing of metallic materials. Flat bending fatigue test. Deutsches Institutfür Normung.

  57. Shigley, J. E., & Mischke, C. R. (2008). Fatigue Failure Resulting from Variable Loading. Mechanical Engineering Design, 370-73.

  58. AFNOR (1999). Association Française de Normalisation, Essais non destructifs – Méthodes d’essais pour l’analyse des contraintes résiduelles par diffraction des rayons X, XP A 09-285, Paris.

  59. J.I. Ning and J.L. Lebrun, Microstructural Study of Static and Dynamic Deformed Polycrystalline Copper by x-ray Diffraction Profile Analysis, Scr. Metall. Mater., 1990, 24(8), p 1547–1552.

    Article  Google Scholar 

  60. K. Dalaei, B. Karlsson and L.E. Svensson, Stability of Residual Stresses Created by Shot Peening of Pearlitic Steel and Their Influence on Fatigue Behaviour, Procedia Eng., 2010, 2(1), p 613–622.

    Article  CAS  Google Scholar 

  61. Lawn, B. R. (1980). A. G, Evans and DB Marshall. J. Am. Ceram. Soc, 63: 574.

  62. N.A. Sakharova, J.V. Fernandes, J.M. Antunes and M.C. Oliveira, Comparison Between Berkovich, Vickers and Conical Indentation Tests: A Three-dimensional Numerical Simulation Study, Int. J. Solids Struct., 2009, 46(5), p 1095–1104.

    Article  Google Scholar 

  63. E.S. Palma, T.R. Mansur, S.F. Silva Jr. and A. Alvarenga Jr., Fatigue Damage Assessment in AISI 8620 Steel Using Barkhausen Noise, Int. J. Fatigue, 2005, 27(6), p 659–665.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was financed in part by the Coordination of Superior Level Staff Improvement, in Portuguese, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors also acknowledge financial support from the CAPES/COFECUB which made the collaboration between the two laboratories (LTS—Brazil and LGCgE—France) possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geovana Drumond.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drumond, G., Pinheiro, B., Pasqualino, I. et al. Fatigue Life Prediction of Steel Pipelines Based on X-ray Diffraction Analyses. J. of Materi Eng and Perform 31, 801–813 (2022). https://doi.org/10.1007/s11665-021-06230-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06230-0

Keywords

Navigation