Skip to main content
Log in

Preparation of g-C3N4/MoS2 Composite Material and Its Visible Light Catalytic Performance

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The g-C3N4 nanosheet was prepared by calcination method, the MoS2 nanosheet was prepared by hydrothermal method. The g-C3N4/MoS2 composites were prepared by ultrasonic composite in anhydrous ethanol. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, and photoluminescence techniques were used to characterize the materials. The photocatalytic degradation of Rhodamine B (Rh B) by g-C3N4/MoS2 composites with different mass ratios was investigated under visible light. The results show that a small amount of MoS2 combined with g-C3N4 can significantly improve photocatalytic activity. The g-C3N4/MoS2 composite with a mass ratio of 1:8 has the highest photocatalytic activity, and the degradation rate of Rh B increases from 50 to 99.6%. The main reason is that MoS2 and g-C3N4 have a matching band structure. The separation rate of photogenerated electron–hole pairs is enhanced. So the g-C3N4/MoS2 composite can improve the photocatalytic activity. Through the active material capture experiment, it is found that the main active material in the photocatalytic reaction process is holes, followed by superoxide radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Palanivel, A. Mani, P. Thayumanavan, Utilization of agro-industrial waste Jatropha curcas pods as an activated carbon for the adsorption of reactive dye Remazol Brilliant Blue R (RBBR). J. Clean. Prod. 22(1), 67–75 (2012)

    Article  Google Scholar 

  2. N. Li, H. Gao, X. Wang, S.J. Zhao, D. Lv, G.Q. Yang, X.Y. Gao, H.K. Fan, Y.Q. Gao, L. Ge, Novel indirect Z-scheme g-C3N4/Bi2MoO6/Bi hollow microsphere heterojunctions with SPR-promoted visible absorption and highly enhanced photocatalytic performance. Chin. J. Catal. 41(03), 426–434 (2020)

    Article  CAS  Google Scholar 

  3. B.X. Zhang, S.X. Cao, M.Q. Du, X.Z. Ye, Y. Wang, J.F. Ye, Titanium dioxide (TiO2) mesocrystals: synthesis, growth mechanisms and photocatalytic properties. Catalysts 9(1), 91 (2019)

    Article  Google Scholar 

  4. H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications (review). J. Photochem. Photobiol. C 15(1), 1–20 (2013)

    Article  CAS  Google Scholar 

  5. B.A. Carlos J., G. Javier, A. Raul, L. Marta, B.P. Bruno, H. Jose L., Anisotropic Au-ZnO photocatalyst for the visible-light expanded oxidation of n-hexane. Cataly Today 362, 97–103 (2021)

  6. J.A. Quek, J.C. Sin, S.M. Lam, A.R. Mohamed, H.H. Zeng, Bioinspired green synthesis of ZnO structures with enhanced visible light photocatalytic activity. J. Mater. Sci. Mater. Electron. 31(2), 1144–1158 (2020)

    Article  CAS  Google Scholar 

  7. S.Q. Wu, H.Y. Hu, Y. Lin, J.L. Zhang, Y.H. Hu, Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J. 382, 122842 (2020)

    Article  CAS  Google Scholar 

  8. Y.P. Xie, Z.B. Yu, G. Liu, X.L. Ma, H.M. Cheng, Cds-mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light. Energy Environ. Sci. 7(6), 1895–1901 (2014)

    Article  CAS  Google Scholar 

  9. J.H. Liu, G.F. Huang, W.Q. Huang, H. Miao, B.X. Zhou, Morphology-controlled SnS2 nanostructures synthesized by refluxing method with high photocatalytic activity. Mater. Lett. 161(1), 480–483 (2015)

    CAS  Google Scholar 

  10. A.D. Di, Y. Wang, G. Chen, Dendritic hierarchical AgCl prepared in the interface of gas-solid as the precursors of the visible-light plasmonic photocatalysts of Ag–AgCl. Funct. Mater. Lett. 11(1), 1850006 (2018)

    Article  CAS  Google Scholar 

  11. Y.Q. Yang, R.X. Liu, G.K. Zhang, L.Z. Gao, W.K. Zhang, Preparation and photocatalytic properties of visible light driven Ag–AgCl–TiO2/palygorskite composite. J. Alloys Compd. 657, 801–808 (2016)

    Article  CAS  Google Scholar 

  12. W.K. Ji, Z.B. Rui, H.B. Ji, Z-scheme Ag3PO4/Ag/SrTiO3 heterojunction for visible-light induced photothermal synergistic VOCs degradation with enhanced performance. Ind. Eng. Chem. Res. 58(31), 13950–13959 (2019)

    Article  CAS  Google Scholar 

  13. A. Tab, B. Bellal, C. Belabed, M. Dahmane, M. Trari, Visible light assisted photocatalytic degradation and mineralization of Rhodamine B in aqueous solution by Ag3PO4. Optik 214, 164858 (2020)

    Article  CAS  Google Scholar 

  14. X.Y. Gao, W. Peng, G.B. Tang, Q. Guo, Y.M. Luo, Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine. J. Alloys Compd. 757, 455–465 (2018)

    Article  CAS  Google Scholar 

  15. Z.L. Liu, F.Y. Lv, Y. Xiao, B. Chen, J. Qiu, W.Z. Guo, Y. Wen, Z. Li, Z.S. Liu, Mor-phologycontrollable synthesis of BiOBr architectures and their visible light photocatalytic activities. Mater. Technol. 34(11), 683–688 (2019)

    Article  CAS  Google Scholar 

  16. X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009)

    Article  CAS  Google Scholar 

  17. J. Li, E.Z. Liu, Y.N. Ma, X.Y. Hu, J. Wan, L. Sun, J. Fan, Synthesis of MoS2/g-C3N4 nanosheets as 2D heterojunction photocatalysts with enhanced visible light activity. Appl. Surf. Sci. 364, 694–702 (2016)

    Article  CAS  Google Scholar 

  18. M. Zhang, X.J. Bai, D. Liu, J. Wang, Y.F. Zhu, Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl. Catal. B 164, 77–81 (2015)

    Article  CAS  Google Scholar 

  19. D.D. Xu, X.N. Li, J. Liu, L.H. Huang, Synthesis and photocatalytic performance of europium-doped graphitic carbon nitride. J. Rare Earths 31(11), 1085–1091 (2013)

    Article  CAS  Google Scholar 

  20. N.Y. Cheng, J.Q. Tian, Q. Liu, C.J. Ge, A.H. Qusti, A.M. Asiri, A.O. Al-Youbi, X.P. Sun, Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl. Mater. Interfaces 5(15), 6815–6819 (2013)

    Article  CAS  Google Scholar 

  21. Y.L. Meng, J. Shen, D. Chen, G. Xin, Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Met. 30(s1), 276–279 (2011)

    Article  CAS  Google Scholar 

  22. Y.G. Wang, Y.Z. Wang, Y.T. Chen, C.C. Yin, Y.H. Zuo, L.F. Cui, Synthesis of Ti-doped graphitic carbon nitride with improved photocatalytic activity under visible light. Mater. Lett. 139, 70–72 (2015)

    Article  CAS  Google Scholar 

  23. J.L. Chen, Z.H. Hong, Y.L. Chen, B.Z. Lin, B.F. Gao, One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light. Mater. Lett. 145, 129–132 (2015)

    Article  CAS  Google Scholar 

  24. M.L. Li, L.X. Zhang, X.Q. Fan, M.Y. Wu, Y.Y. Du, M. Wang, Q.L. Kong, L.L. Zhan-g, J.L. Shi, Dual synergetic effects in MoS2/pyridine-modified g-C3N4 composite for highly active and stable photocatalytic hydrogen evolution under visible light. Appl. Catal. B 190, 36–43 (2016)

    Article  CAS  Google Scholar 

  25. X. Yan, Q. Gao, X. Hui, C. Yan, T. Ai, Z. Wang, G. Sun, X. Su, P. Zhao, Fabrication of g-C3N4/MoS2 nanosheet heterojunction by facile ball milling method and its visible light photocatalytic performance. Rare Metal Mater. Eng. 47(10), 3015–3020 (2018)

    Article  Google Scholar 

  26. L. Ge, C.C. Han, X.L. Xiao, L.L. Guo, Synthesis and characterization of composite visible light active photocatalysts MoS2–C3N4 with enhanced hydrogen evolution activity. Int. J. Hydrogen Energy 38(17), 6960–6969 (2013)

    Article  CAS  Google Scholar 

  27. Q. Li, N. Zhang, Y. Yang, G.Z. Wang, N.H.L. Dickon, High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures. Langmuir 30(29), 8965–8972 (2014)

    Article  CAS  Google Scholar 

  28. W.J. Zhou, Z.Y. Yin, Y.P. Du, X. Huang, Z.Y. Zeng, Z.X. Fan, H. Liu, J.Y. Wang, H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1), 140–147 (2013)

    Article  CAS  Google Scholar 

  29. Y.N. Ma, E.Z. Liu, X.Y. Hu, C.N. Tang, J. Wan, J. Li, J. Fan, A simple process to prepare few-layer g-C3N4 nanosheets with enhanced photocatalytic activities. Appl. Surf. Sci. 358(Part A), 246–251 (2015)

    Article  CAS  Google Scholar 

  30. L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ. Sci. 11(1), 106–114 (2017)

    Article  Google Scholar 

  31. X.F. Yang, Z.P. Chen, J.S. Xu, H. Tang, K.M. Chen, Y. Jiang, Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Appl. Mater. Interfaces 7(28), 15285–15293 (2015)

    Article  CAS  Google Scholar 

  32. M.J. Lucero, J.K. Ellis, G.E. Scuseria, The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99(26), 261908 (2011)

    Article  Google Scholar 

  33. X. Chen, P.F. Tan, B.H. Zhou, H.G. Dong, J. Pan, X. Xiong, A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity. J. Alloys Compd. 647(15), 456–462 (2015)

    Article  CAS  Google Scholar 

  34. H.L. Lv, G.B. Ji, Z.H. Yang, Y.S. Liu, X.M. Zhang, W. Liu, H.Q. Zhang, Enhancement photocatalytic activity of the graphite-like C3N4 coated hollow pencil-like ZnO. J. Colloid Interface Sci. 450, 381–387 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (61664008), Yan’an Science and Technology Planning Project (2019ZCNZ-001); Yan’an University Industry-University-Research Cooperation Project (CXY201902); Research Fund for key Laboratories jointly built by provinces and cities of Shaanxi Province for Intelligent Processing of Big Data (IPBED11, IPBED16); Graduate Education Reform Program of Yan’an University (YDYJG2019018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ning Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Yang, Yn. & Ding, C. Preparation of g-C3N4/MoS2 Composite Material and Its Visible Light Catalytic Performance. J Inorg Organomet Polym 31, 4722–4730 (2021). https://doi.org/10.1007/s10904-021-02099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02099-7

Keywords

Navigation