Skip to main content

Advertisement

Log in

A Study to Evaluate the Bioactivity Behavior and Electrical Properties of Hydroxyapatite/Ag2O-Borosilicate Glass Nanocomposites for Biomedical Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, nanocomposites with different contents of borosilicate glass (BG) and carbonated hydroxyapatite (CHA) were mixed, ground and sintered at 750 °C. In order to examine their phase composition, molecular structure and microstructure, x-ray diffraction (XRD) technique, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), respectively were used. Moreover, the DC electrical conductivity and physical and mechanical properties of the prepared nanocomposites were measured. In addition, the in vitro bioactivity of the sintered samples was evaluated using XRD and SEM. Unexpectedly; the results indicated that the successive increase in BG contents promoted the partial decomposition of CHA at this lower sintering temperature. Also, it was responsible for the enhanced bioactivity behavior along with giving CHA better mechanical properties whereby microhardness, compressive strength, and Young’s, elastic, bulk and shear moduli were improved even 50, 40, 85, 81.81, 78.5 and 77.27%, respectively. In addition, the density of these nanocomposites was enhanced to 31.03%. However, the electrical conductivity of the examined samples exhibited an opposite trend where it decreased by 87.3% with the increase of the BG content to 32 wt%. According to the results obtained, the prepared samples are suitable for use in various biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V.V.A. Thampi, B. Subramanian, Bioactive glasses for orthopedic and orthodontic implant applications. ELYNS J. Mater. Sci. Tech. 1(1), 1–10 (2017)

    Google Scholar 

  2. A. Das, D. Pamu, A comprehensive review on electrical properties of hydroxyapatite based ceramic composites. Mater. Sci. Eng. C 110, 539–563 (2019)

    Article  Google Scholar 

  3. J.N. Olivera, Y. Suc, X. Lua, P.-H. Kuoa, J. Dua, D. Zhuc, Bioactive glass coatings on metallic implants for biomedical applications. Bioact. Mater. 4, 261–270 (2019)

    Article  Google Scholar 

  4. S. Seyedmajidi, R. Rajabnia, M. Seyedmajidi, Evaluation of antibacterial properties of hydroxyapatite/bioactive glass and fluorapatite/bioactive glass nanocomposite foams as a cellular scaffold of bone tissue. J. Lab. Physicians 10(3), 265–270 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R.A. Youness, M.A. Taha, A.A. El-Kheshen, M. Ibrahim, Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass. Ceram. Int. 44, 20677–20685 (2018)

    Article  CAS  Google Scholar 

  6. R.A. Youness, M.A. Taha, M. Ibrahim, In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis. Ceram. Int. 44, 21323–21329 (2018)

    Article  CAS  Google Scholar 

  7. E.S. Thian, T. Konishi, Y. Kawanobe, P.N. Lim, C. Choong, B. Ho, M. Aizawa, Zinc substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J. Mater. Sci. Mater. Med. 24, 437–445 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. P. Bhattacharjee, H. Begam, A. Chanda, Development and physical, chemical and mechanical characterization of doped hydroxyapatite. Int. J. Sci. Eng. Res. 2(4), 1–8 (2011)

    Google Scholar 

  9. H. Oonishi, Orthopaedic applications of hydroxyapatite. Biomaterials 12, 171–178 (1991)

    Article  CAS  PubMed  Google Scholar 

  10. L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 2, 117–141 (1971)

    Article  Google Scholar 

  11. L.L. Hench, J.R. Jones, Bioactive glasses: frontiers and challenges. Front. Bioeng. Biotechnol. 3, 1–12 (2015)

    Article  Google Scholar 

  12. H. Oonishi, L.L. Hench, J. Wilson, F. Sugihara, E. Tsuji, M. Matsuura, Quantitative comparison of bone growth behavior in granules of Bioglass (R), A-W glass-ceramic, and hydroxyapatite. J. Biomed. Mater. Res. 51(1), 37–46 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. X. Qi, H. Wang, Y. Zhang, L. Pang, W. Xiao, W. Jia, S. Zhao, D. Wang, W. Huang, Q. Wang, Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects. Int. J. Biol. Sci. 14(4), 471–484 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. I.J. Macha, B. Ben-Nissan, J. Santos, S. Cazalbou, A. Stamboulis, D. Grossin, G. Giordano, Biocompatibility of a new biodegradable polymer-hydroxyapatite composite for biomedical applications. J. Drug Deliv. Sci. Technol. 38, 72–77 (2017)

    Article  CAS  Google Scholar 

  15. G. Dubinenko, A. Zinoviev, E. Bolbasov, A. Kozelskaya, E. Shesterikov, V. Novikov, S. Tverdokhlebov, Highly filled poly(1-lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds. J. Appl. Polym. Sci. 138(2), 1–10 (2020)

    Google Scholar 

  16. S. Sathiyavimal, S. Vasantharaj, F.L. Oscar, R. Selvaraj, K. Brindhadevi, A. Pugazhendhi, Natural organic and inorganic-hydroxyapatite biopolymer composite for biomedical applications. Prog. Org. Coat. 147, 105858 (2020)

    Article  CAS  Google Scholar 

  17. R.A. Youness, M.A. Taha, M. Ibrahim, In vitro bioactivity, molecular structure and mechanical properties of zirconia-carbonated hydroxyapatite nanobiocomposites sintered at different temperatures. Mater. Chem. Phys. 239, 122011 (2020)

    Article  CAS  Google Scholar 

  18. M.A. Taha, R.A. Youness, M. Ibrahim, Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications. Ceram. Int. 46, 23599–23610 (2020)

    Article  CAS  Google Scholar 

  19. R.A. Youness, M.A. Taha, M. Ibrahim, Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite. J. Mol. Struct. 1150, 188–195 (2017)

    Article  CAS  Google Scholar 

  20. R.A. Youness, M.A. Taha, M.A. Ibrahim, The influence of various zirconia contents on crystallite sizes, shrinkage, and physical and mechanical properties of hydroxyapatite-based nanobiocomposites, Egypt. J. Chem. 64(3), 1347–1352 (2021)

    Google Scholar 

  21. D.E. Abulyazied, A.M. Alturki, R.A. Youness, H.M. Abomostafa, Synthesis, structural and biomedical characterization of hydroxyapatite/borosilicate bioactive glass nanocomposites. J. Inorg. Organomet. Polym. Mater. 19, 103343 (2021)

    Google Scholar 

  22. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated hydroxyapatite prepared by mechanochemical synthesis. Mater. Chem. Phys. 190, 209–218 (2017)

    Article  CAS  Google Scholar 

  23. R.A. Youness, M.A. Taha, H. Elhaes, M. Ibrahim, Preparation, FTIR characterization and mechanical properties of hydroxyapatite nanopowders. J. Comput. Theor. Nanosci. 14, 2409–2415 (2017)

    Article  CAS  Google Scholar 

  24. E.B. Moustafa, M.A. Taha, Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying. Int. J. Miner. Metall. Mater. 28, 475–486 (2021)

    Article  CAS  Google Scholar 

  25. E.B. Moustafa, W.S. AbuShanab, E. Ghandourah, M.A. Taha, Microstructural, mechanical and thermal properties evaluation of AA6061/Al2O3-BN hybrid and mono nanocomposite surface. JMRT 9(6), 15486–15495 (2020)

    CAS  Google Scholar 

  26. W.S. AbuShanab, E.B. Moustafa, E. Ghandourah, M.A. Taha, Effect of graphene nanoparticles on the physical and mechanical properties of the Al2024-graphene nanocomposites fabricated by powder metallurgy. Results Phys. 19, 103343 (2020)

    Article  Google Scholar 

  27. R.A. Youness, M.A. Taha, A. El-Kheshen, N. El-Faramawy, M. Ibrahim, In vitro bioactivity evaluation, antimicrobial behavior and mechanical properties of cerium-containing phosphate glasses. Mater. Res. Express 6, 075212 (2019)

    Article  CAS  Google Scholar 

  28. R.A. Youness, M.A. Taha, M. Ibrahim, A. El-Kheshen, FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate based bioactive glasses. Silicon 10, 1151–1159 (2018)

    Article  CAS  Google Scholar 

  29. R.A. Youness, M.A. Taha, M. Ibrahim, Dense alumina-based carbonated fluorapatite nanobiocomposites for dental applications. Mater. Chem. Phys. 25, 123264 (2021)

    Article  Google Scholar 

  30. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27(15), 2907–2915 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W. J. Biomed. Mater. Res. A 24, 721–734 (1990)

    Article  CAS  Google Scholar 

  32. R.L. Siqueira, E.D. Zanotto, The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P2O5 sol-gel glasses and glass-ceramics. J. Mater. Sci. Mater. Med. 24, 365–379 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. S. Laasri, M. Taha, E.K. Hlil, A. Laghzizil, A. Hajjaji, Manufacturing and mechanical properties of calcium phosphate biomaterials. C. R. Mecanique 340, 715–720 (2012)

    Article  CAS  Google Scholar 

  34. A. Bandyopadhyay, E.A. Withey, J. Moore, S. Bose, Influence of ZnO doping in calcium phosphate ceramics. Mater. Sci. Eng. C 27, 14–17 (2007)

    Article  CAS  Google Scholar 

  35. A.A. El-Kheshen, M.F. Zawrah, M. Awad, Densification, phase composition, and properties of borosilicate glass composites containing nano-alumina and titania. J. Mater. Sci. Mater. Electron. 20, 637–643 (2009)

    Article  CAS  Google Scholar 

  36. H.A. Abo-Mosallam, S.N. Salama, S.M. Salman, Formulation and characterization of glass-ceramics based on Na2Ca2Si3O9 Ca5(PO4)3F-Mg2SiO4 system in relation to their biological activity. J. Mater. Sci. Mater. Med. 20(12), 2385–2394 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. D. Bellucci, A. Sola, A. Anesi, R. Salvatori, L. Chiarini, V. Cannillo, Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation. Mater. Sci. Eng. C 51, 196–205 (2015)

    Article  CAS  Google Scholar 

  38. E.M.A. Khalil, R.A. Youness, M.S. Amer, M.A. Taha, Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-B2O3-SiO2 glass-ceramics. Ceram. Int. 44, 7867–7876 (2018)

    Article  CAS  Google Scholar 

  39. H. Ghomi, M.H. Fathi, H. Edris, Effect of the composition of hydroxyapatite/bioactive glass nanocomposite foams on their bioactivity and mechanical properties. Mater. Res. Bull. 47, 3523–3532 (2012)

    Article  CAS  Google Scholar 

  40. R. Koohkan, T. Hooshmand, M. Tahriri, D. Mohebbi-Kalhori, Synthesis, characterization and in vitro bioactivity of mesoporous copper silicate bioactive glasses. Ceram. Int. 44, 2390–2399 (2018)

    Article  CAS  Google Scholar 

  41. R.L. Siqueira, N. Maurmann, D. Burguêz, D.P. Pereira, A.N.S. Rastelli, O. Peitl, P. Pranke, E.D. Zanotto, Bioactive gel-glasses with distinctly different compositions: bioactivity, viability of stem cells and antibiofilm effect against Streptococcus mutans. Mater. Sci. Eng. C 76, 233–241 (2017)

    Article  CAS  Google Scholar 

  42. P.R.T. Kuzyk, E.H. Schemitsch, The science of electrical stimulation therapy for fracture healing. Indian J. Orthop. 43(2), 127–131 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  43. L. Leppik, H. Zhihua, S. Mobini, V. Thottak, K. Parameswaran, M. Eischen, A. Slavici, J. Helbing, L. Pindur, K.M.C. Oliveira, M.B. Bhavasar, L. Hudak, D. Henrich, J.H. Barker, Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci. Rep. 8, 6307 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  44. C. Galli, G. Pedrazzi, M. Mattioli-Belmonte, S. Guizzardi, The use of pulsed electromagnetic fields to promote bone responses to biomaterials in vitro and in vivo. Int. J. Biomater. 2018, 1–15 (2018)

    Article  Google Scholar 

  45. S. Bale, S. Rahman, Role of ZnO in Dc electrical conductivity of lithium bismuthate glasses. ISRN Mater. Sci. 2013, 1–9 (2013)

    Article  Google Scholar 

  46. M.M.R.A. Lima, R.C.C. Monteiro, M.P.F. Graca, M.G.F. da Silva, Structural, electrical and thermal properties of borosilicate glass-alumina composites. J. Alloys Compd. 538, 66–72 (2012)

    Article  CAS  Google Scholar 

  47. K. Yamashita, K. Kitagaki, T. Umegaki, Thermal-instability and proton conductivity of ceramic hydroxyapatite at high-temperatures. J. Am. Ceram. Soc. 78, 1191–1197 (1995)

    Article  CAS  Google Scholar 

  48. J.P. Gittings, C.R. Bowen, A.C.E. Dent, I.G. Turner, F.R. Baxter, J.B. Chaudhuri, Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomater. 5, 743–754 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. S.M. Kalil, H.H. Beheri, W.I.A. Fattah, Structural and electrical properties of zirconia/hydroxyapatite porous composites. Ceram Int. 28, 451–458 (2002)

    Article  Google Scholar 

  50. K. Yamashita, H. Owada, H. Nakagawa, T. Umegaki, T. Kanazawa, Trivalent-cation-substituted calcium oxyhydoxyapatite. J. Am. Ceram. Soc. 69, 590–594 (1986)

    Article  CAS  Google Scholar 

  51. T. Takahashi, S. Tanase, O. Yamamoto, Electrical-conductivity of some hydroxyapatites. Electrochim. Acta 23, 369–373 (1978)

    Article  CAS  Google Scholar 

  52. T. Kokubo, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro, Bonding between bioactive glasses, glass-ceramics or ceramics in a simulated body fluid. J. Ceram. Soc. Jpn. 95(8), 785–791 (1987)

    CAS  Google Scholar 

  53. S.H. Oh, S.Y. Choi, Y.K. Lee, K.N. Kim, Research on annihilation of cancer cells by glass-ceramics for cancer treatment with external magnetic field. I. Preparation and cytotoxicity. J. Biomed. Mater. Res. 54(3), 360–36524 (2001)

    Article  CAS  PubMed  Google Scholar 

  54. T. Kokubo, S. Ito, S. Sakka, T. Yamamuro, Formation of a high-strength bioactive glass-ceramic in the system MgO-CaO-SiO2-P2O5. J. Mater. Sci. 21(2), 536–540 (1986)

    Article  CAS  Google Scholar 

  55. H.A. El Batal, M.A. Azooz, M.M. Ibrahim, A.M. Ali, H.H. Somaily, M.A. Sayed, Bioactivity behavior of multicomponent (P2O5-B2O3-SiO2-Na2O-CaF2) glasses doped with ZnO, CuO or Ag2O and their glass ceramics. Silicon 13, 1825 (2020)

    Article  Google Scholar 

  56. L. Radev, I. Michailova, D. Zaimova, T. Dimova, In vitro bioactivity of silver containing sol-gel glasses: FTIR analysis. IJIR 3(4), 316–323 (2017)

    Google Scholar 

  57. M. Htut, M. Lwin, P. Kaung, S. Htoon, Infrared spectroscopic study on the structure of Ag2O.B2O3 glasses. J. Myanmar Acad. Arts Sci. 4(2), 339–346 (2000)

    Google Scholar 

  58. J.A. Roether, A.R. Boccaccini, L.L. Hench, V. Maquet, S. Gautier, R. Jerome, Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and bioglass for tissue engineering applications. Biomaterials 23, 3871–3878 (2002)

    Article  CAS  PubMed  Google Scholar 

  59. W.S. AbuShanab, E.B. Moustafa, M.A. Taha, R.A. Youness, Synthesis and structural properties characterization of titania/zirconia/calcium silicate nanocomposites for biomedical applications. Appl. Phys. A 126, 1–12 (2020)

    Article  Google Scholar 

  60. O.G. Agbabiaka, I.O. Oladele, A.D. Akinwekomi, A.A. Adediran, A.O. Balogun, O.G. Olasunkanm, T.M.A. Olayanju, Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell. Sci. African 8, e00452 (2020)

    Article  Google Scholar 

  61. W.P.S.L. Wijesinghe, M.M.M.G.P.G. Mantilaka, E.V.A. Premalal, H.M.T.U. Herath, S. Mahalingam, M. Edirisinghe, R.P.V.J. Rajapakse, R.M.G. Rajapakse, Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity. Mater. Sci. Eng. C 42, 83–90 (2014)

    Article  CAS  Google Scholar 

  62. X. Guo, H. Yan, S. Zhao, L. Zhang, Y. Li, X. Liang, Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Adv. Powder Technol. 24, 1034–1038 (2013)

    Article  CAS  Google Scholar 

  63. S. Manafi, F. Mirjalili, R. Reshadi, Synthesis and evaluation of the bioactivity of fluorapatite–45S5 bioactive glass nanocomposites. Progr. Biomater. 8, 77–89 (2019)

    Article  CAS  Google Scholar 

  64. L. Rodrıguez-Lorenzo, K. Gross, Influence of fluorine in the synthesis of apatites Synthesis of solid solutions of hydroxy–fluorapatite. Biomaterials 24, 3777–3785 (2003)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge university of Tabuk for the financial support under research Project Number S-1441-0023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Taha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alturki, A.M., Abulyazied, D.E., Taha, M.A. et al. A Study to Evaluate the Bioactivity Behavior and Electrical Properties of Hydroxyapatite/Ag2O-Borosilicate Glass Nanocomposites for Biomedical Applications. J Inorg Organomet Polym 32, 169–179 (2022). https://doi.org/10.1007/s10904-021-02100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02100-3

Keywords

Navigation